Acceleration in Cylindrical Coordinates#
Part 1#
When using cylindrical coordinates for space curvilinear motion the expression for acceleration is
Answer Section#
\({\bf{a}} = (\ddot{r} - r\ddot{\theta}){\bf{e_r}} + (r\ddot{\theta} + 2\dot{r}\dot{\theta}){\bf{e_{\theta}}} + \ddot{z}{\bf{k}}\)
\({\bf{a}} = (\ddot{r} + r\ddot{\theta}){\bf{e_r}} + (r\ddot{\theta} - 2\dot{r}\dot{\theta}){\bf{e_{\theta}}} + \ddot{z}{\bf{k}}\)
\({\bf{a}} = (\ddot{r} - r\ddot{\theta}){\bf{e_r}} + (r\ddot{\theta} - 2\dot{r}\dot{\theta}){\bf{e_{\theta}}} + \ddot{z}{\bf{k}}\)
\({\bf{a}} = (\ddot{r} + r\ddot{\theta}){\bf{e_r}} + (r\ddot{\theta} + 2\dot{r}\dot{\theta}){\bf{e_{\theta}}} + \ddot{z}{\bf{k}}\)
Attribution#
Problem is licensed under the CC-BY-NC-SA 4.0 license.