Acceleration in Cylindrical Coordinates

Acceleration in Cylindrical Coordinates#

Part 1#

When using cylindrical coordinates for space curvilinear motion the expression for acceleration is

Answer Section#

  • \({\bf{a}} = (\ddot{r} - r\ddot{\theta}){\bf{e_r}} + (r\ddot{\theta} + 2\dot{r}\dot{\theta}){\bf{e_{\theta}}} + \ddot{z}{\bf{k}}\)

  • \({\bf{a}} = (\ddot{r} + r\ddot{\theta}){\bf{e_r}} + (r\ddot{\theta} - 2\dot{r}\dot{\theta}){\bf{e_{\theta}}} + \ddot{z}{\bf{k}}\)

  • \({\bf{a}} = (\ddot{r} - r\ddot{\theta}){\bf{e_r}} + (r\ddot{\theta} - 2\dot{r}\dot{\theta}){\bf{e_{\theta}}} + \ddot{z}{\bf{k}}\)

  • \({\bf{a}} = (\ddot{r} + r\ddot{\theta}){\bf{e_r}} + (r\ddot{\theta} + 2\dot{r}\dot{\theta}){\bf{e_{\theta}}} + \ddot{z}{\bf{k}}\)

Attribution#

Problem is licensed under the CC-BY-NC-SA 4.0 license.
The Creative Commons 4.0 license requiring attribution-BY, non-commercial-NC, and share-alike-SA license.