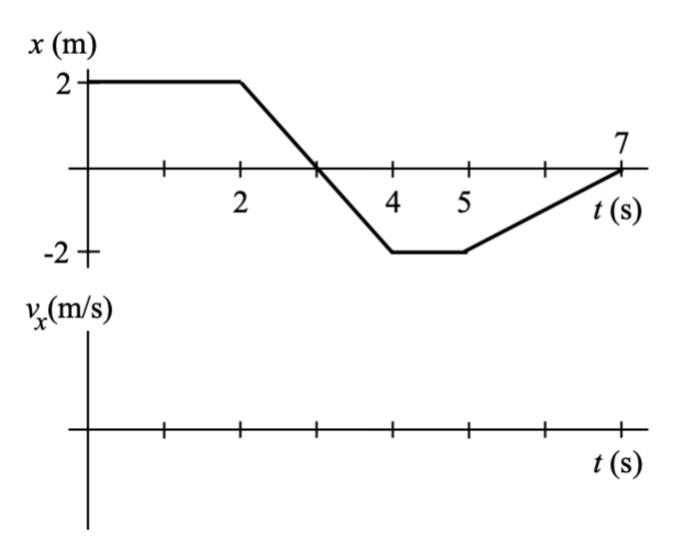
Week 3 Tutorial

Tutorial Section Tutorial Time Tutorial TA Name

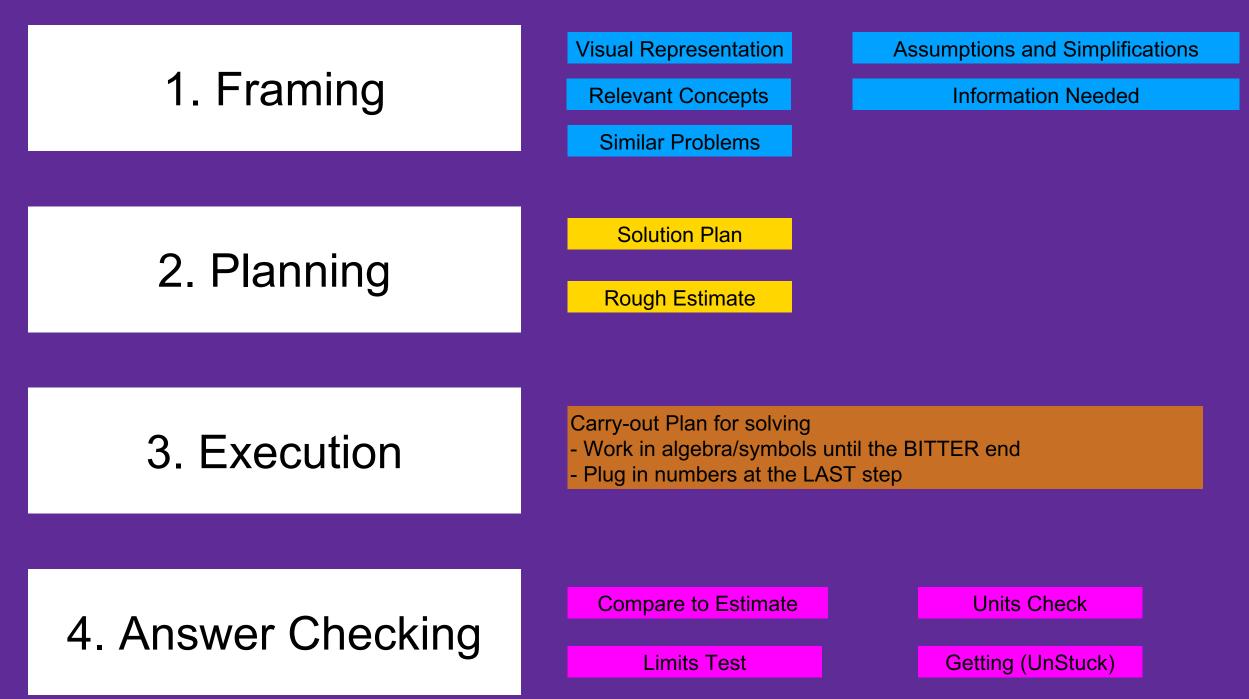

About Me

Tutorial Structure

- Introduction
- Question 1
- Problem Solving Framework
- Question 2
- Problem Solving Framework
- Q&A

Question 1

A position vs. time graph is shown. On the velocity versus time graph below it sketch the corresponding velocity as a function of time. Show all calculations, and label the axes appropriately. /9



Problem Solving Framework

PHYSICAL REVIEW PHYSICS EDUCATION RESEARCH 16, 010123 (2020)

Template for teaching and assessment of problem solving in introductory physics

E. W. Burkholder^(D),^{1,*} J. K. Miles,² T. J. Layden,² K. D. Wang,³ A. V. Fritz^(D),⁴ and C. E. Wieman^(D),^{1,3}

Reference: Template for teaching and assessment of problem solving in introductory physics

2. Planning

4. Answer Checking 3. Execution

1. Framing

(i, i)

Visual representation: describe the motion based on position vs time graph; i.e., from 0-2s, position x stays the same at 2m.

Assumptions and simplifications: Only consider this motion in 1D.

Relevant concept: the relationship between position x, velocity Vx: Vx=dx/dt

Information needed: position change during certain time period

Similar problems: given Vx vs t graph, draw ax vs t graph; given Vx vs t graph, draw x vs t graph, etc.

2. Planning

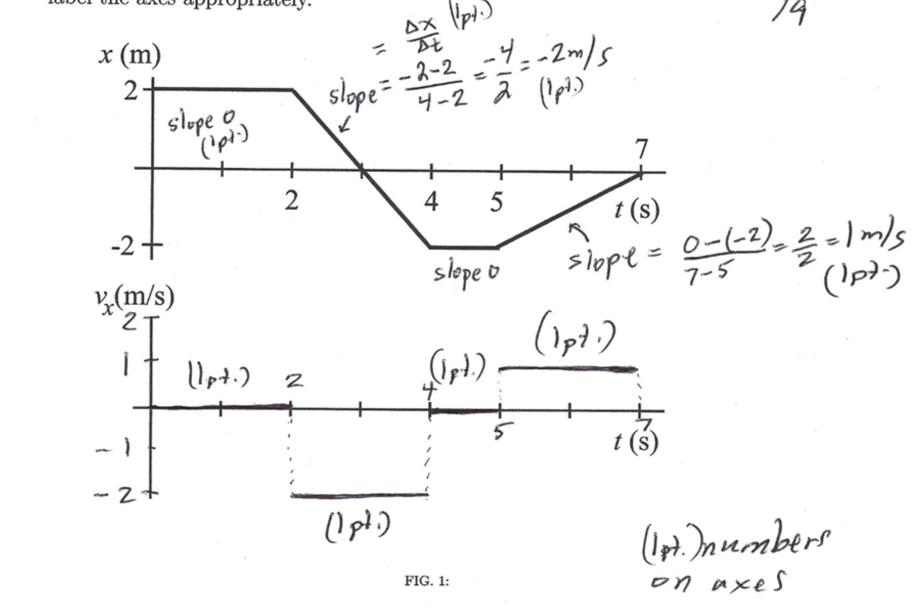
- Rough estimate: It's hard to estimate how a graph should look like but we know that once the slope of x vs t graph changes the velocity would change. So, in this problem we need to calculate velocity for each time section separately. Also, roughly we can estimate the sign of velocity (positive/negative/0) from visually viewing the graph. We can do that for final double check.
- Solution plan: First divide 0-7s into several time section for separate velocity calculation. Then calculate velocity using Vx=dx/dt for each time section. Finally draw line to represent velocity during each period of time.

3. Execution

• See solution on slide 10. Carry out the calculation, plug in the numbers at the last step.

4. Answer Checking

Compare to estimates: compare the calculation results to your rough estimates see whether the sign matches.


Units: Think about what unit we use for Vx in this problem and add them in your final answer.

Limits: Think about how x vs t graph looks like with 0 velocity? How increasing or decreasing the velocity change x vs t graph?

Getting (UnStuck)? Not sure what it means...

Solution

2. A position vs. time graph is shown. On the velocity versus time graph below it sketch the corresponding velocity as a function of time. Show all calculations, and label the axes appropriately. (1_{p}) /4

Question 2

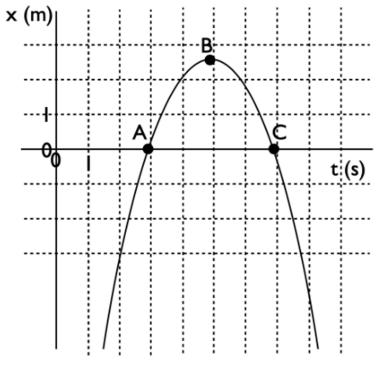


FIG. 1:

3. (a) At each of A, B and C on Fig. 1, estimate the x-component of the velocity vector, v_x from the position vs. time graph (/3). Draw a tangent line to the graph at each location (/3) and show the calculation of its slope (/3).

(b) What sign, if any, does the x-component of the acceleration vector, a_x , have at point B (/2)?

2. Planning

4. Answer Checking 3. Execution

1. Framing

(i, i)

Visual representation: describe the motion based on position vs time graph; i.e., from 0-2s, position x stays the same at 2m.

Assumptions and simplifications: Only consider this motion in 1D.

Relevant concept: the relationship between position x, velocity Vx: Vx=dx/dt

Information needed: position change during certain time period

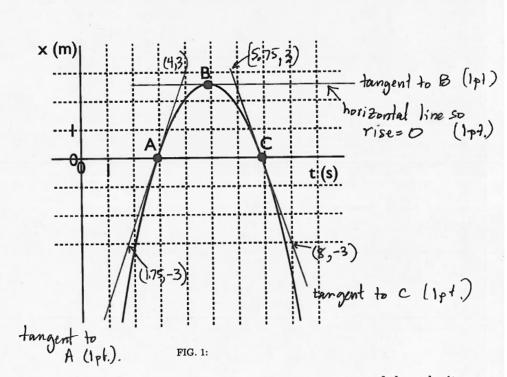
Similar problems: given Vx vs t graph, draw ax vs t graph; given Vx vs t graph, draw x vs t graph, etc.

- Rough estimate: We can estimate the sign of velocity (positive/negative/0) from visually viewing the graph, and relative change velocity based on the slope.
- Solution plan: For a, at each point, draw the tangent line and calculate velocity using V=dx/dt. For b, use a=dV/dt to estimate the sign.

3. Execution

• See solution above. Carry out the calculation, plug in the numbers at the last step.

4. Answer Checking


Compare to estimates: compare the calculation results to your rough estimates see whether the sign matches.

Units: Think about what unit we use for Vx in this problem and add them in your final answer.

Limits: Think about how x vs t graph looks like with 0 velocity? How increasing or decreasing the velocity change x vs t graph?

Getting (UnStuck)? Not sure what it means...

Solution

3

3. (a) At each of A, B and C on Fig. 1, estimate the x-component of the velocity vector, v_x from the position vs. time graph (/3). Draw a tangent line to the graph at each location (/3) and show the calculation of its slope (/3). $V_{RX} = \frac{\Delta x}{\Delta t} = \frac{3 - (-3)}{4 - 1.75} \frac{m}{5} \frac{(1pt.)}{(1pt.)}$ $V_{BX} = \frac{O}{run} = Om/s$ $V_{CX} = \frac{\Delta x}{\Delta t} = \frac{-3 - 3m}{8 - 5.75} \frac{-6}{3.25}$ $V_{CX} = \frac{\Delta x}{\Delta t} = \frac{-3 - 3m}{8 - 5.75} \frac{-6}{3.25}$ $V_{RX} = \frac{1}{2} \frac{1}{$

(b) What sign, if any, does the x-component of the acceleration vector, a_x , have at point B(/2)? (pt.) (pt.) (pt.) a_x has a negative sign A since V_x is positive just before B and negative just after B. $ie. a_x = \frac{V_{cx} - V_{Ax}}{t_c - t_A} < 0$ if her(1pt.)