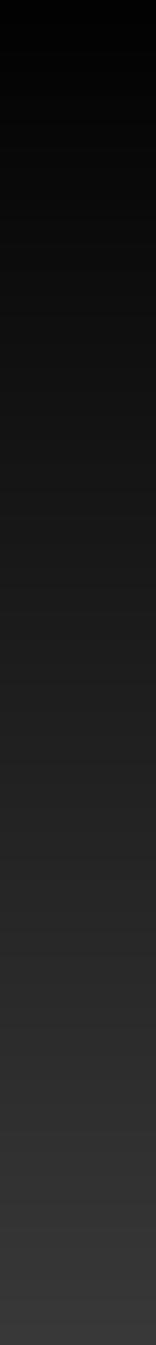
Physics 111 - Class 12A Rotational Motion

November 21, 2022

O Logistics / Announcements

Chapter 10 Section Summary - Rotational Motion

Output Lots of talking from me today, SORRY!



Logistics/Announcements

- Lab this week: Lab 8
- HW10 due this week on Thursday at 6 PM
- Learning Log 10 due on Saturday at 6 PM
- HW and LL deadlines have a 48 hour grace period
- Test/Bonus Test: Bonus Test 5 available this week (Chapters 8 & 9)
 - Test will be in class on Friday from 4 5 PM

Physics 111

Q Search this book...

Unsyllabus

ABOUT THIS COURSE

Course Syllabus (Official)

Course Schedule

Accommodations

How to do well in this course

GETTING STARTED

Before the Term starts

After the first class

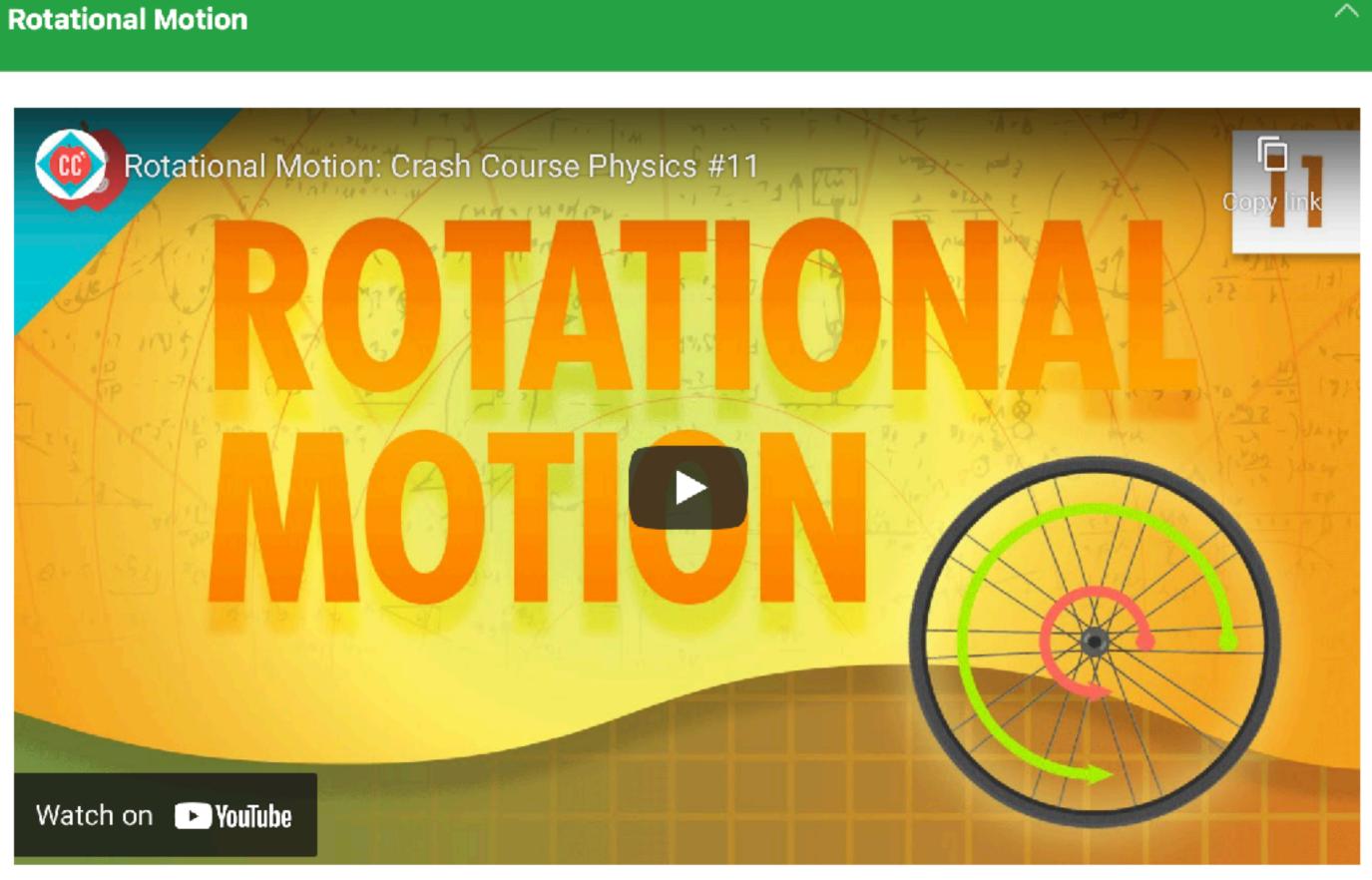
In the first week

Week 1 - Introductions!

PART 1 - KINEMATICS

Week 2 - Chapter	2
Week 3 - Chapter	3

÷

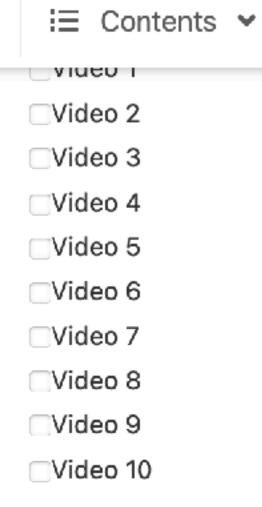


Torque

 \mathbf{v}

 \sim

 \mathbf{v}

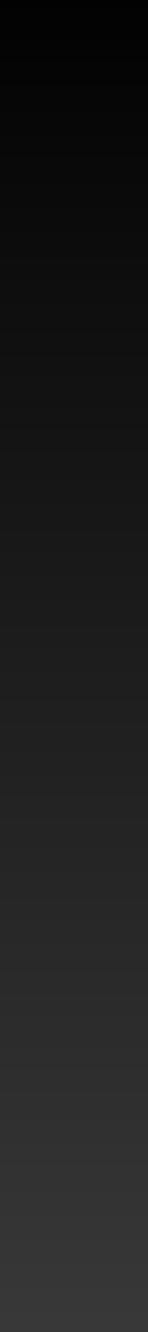


53

 \sim

Monday's Class

10.1 Rotational Variables 10.2 Rotation with Constant Angular Acceleration 10.3 Relating Angular and Translational Quantities 10.8 Work and Power for Rotational Motion



 So far in this course we have mostly done "translational motion" in x, y, or z

Quantities: Displacement, velocity, and acceleration

• As we become more sophisticated physicists, we realize that we have ignored "rotational motion"

 Quantities: Angular displacement, Angular velocity, Angular acceleration

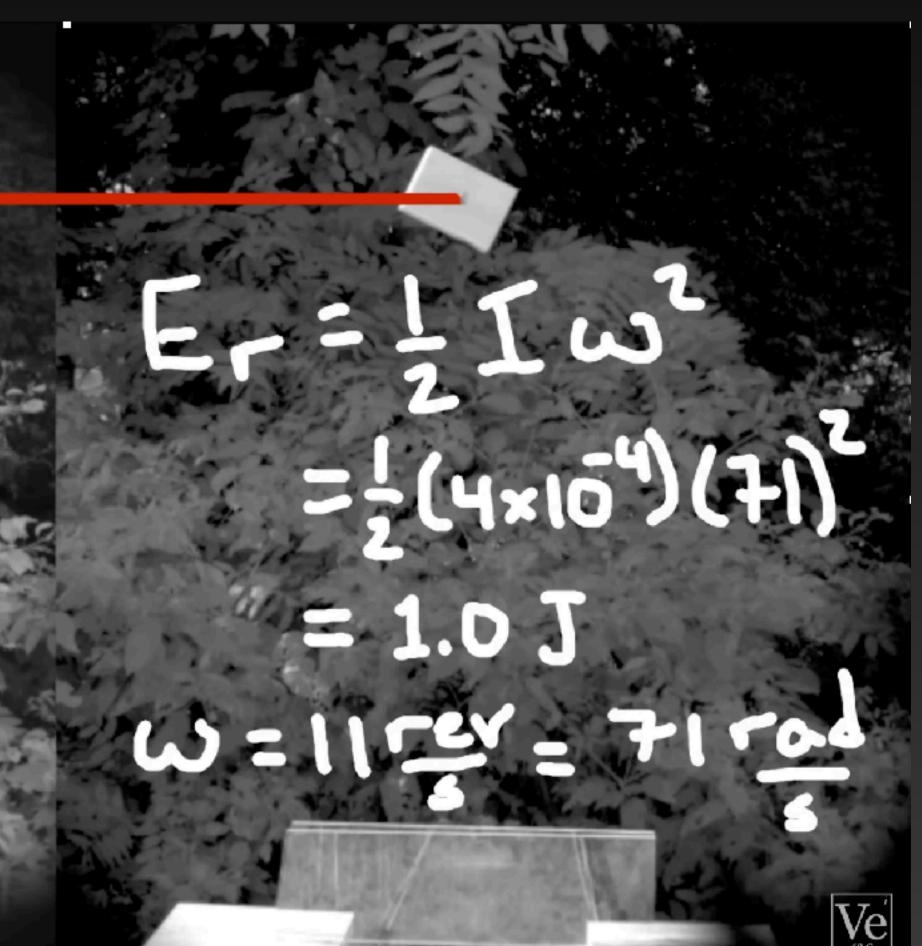
Rotational Variables

Remember from the demo last week:

Spinning Block has rotational kinetic Energy

=(0.13)(1.9)(0.7)

Rotational Variables

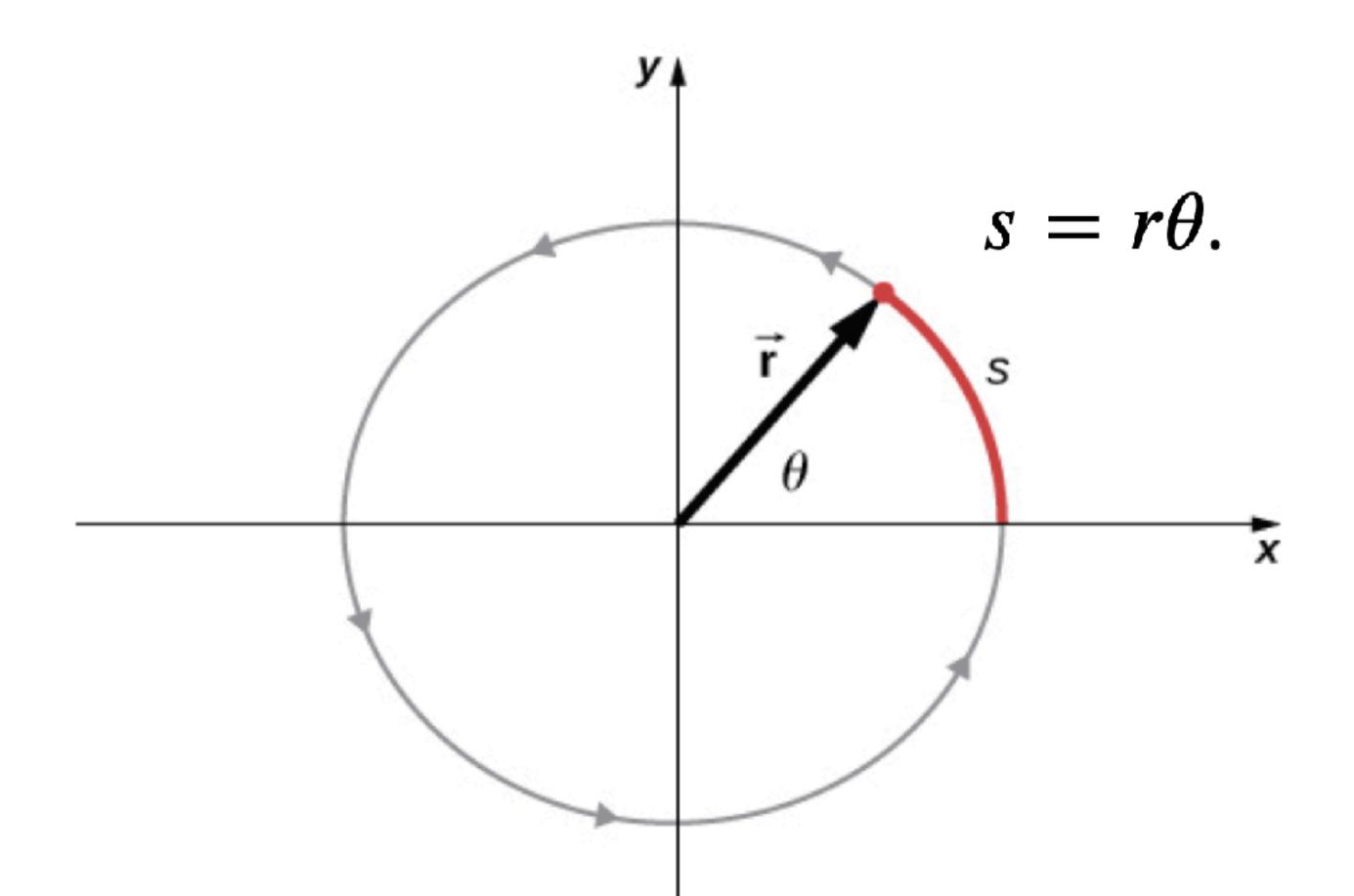


Rotational	Translational	Relationship (r = radius)
θ	S	$\theta = \frac{s}{r}$
ω	v_{t}	$\omega = \frac{v_{\rm t}}{r}$
α	a_{t}	$\alpha = \frac{a_{\rm t}}{r}$
	a _c	$a_{\rm c} = \frac{v_{\rm t}^2}{r}$

 Table 10.3 Rotational and Translational Quantities: Circular Motion

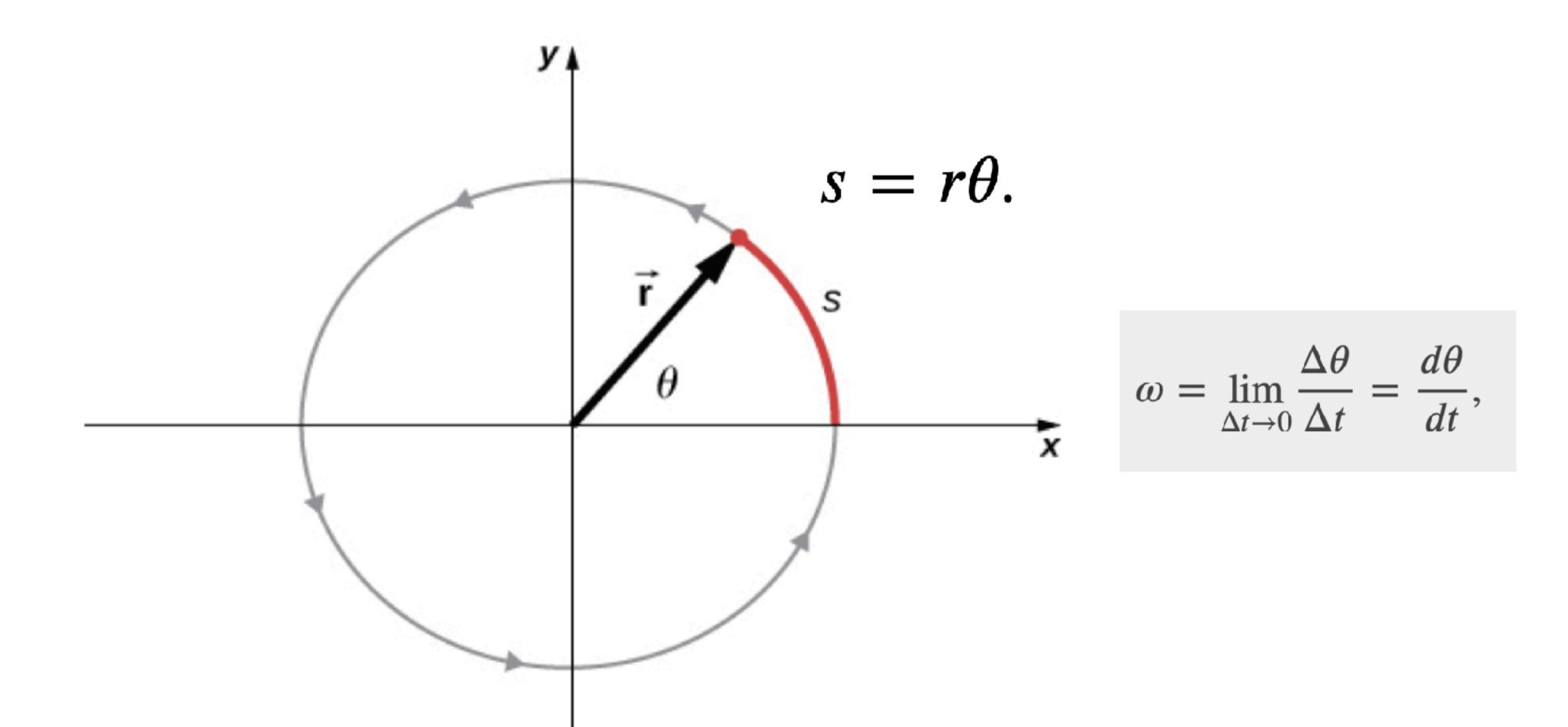
Rotational Quantities

In Figure 10.2, we show a particle moving in a circle. The coordinate system is fixed and serves as a frame of reference to define the particle's position. Its position vector from the origin of the circle to the particle sweeps out the angle θ , which increases in the counterclockwise direction as the particle moves along its circular path. The angle θ is called the angular position of the particle. As the particle moves in its circular path, it also traces an arc length s.



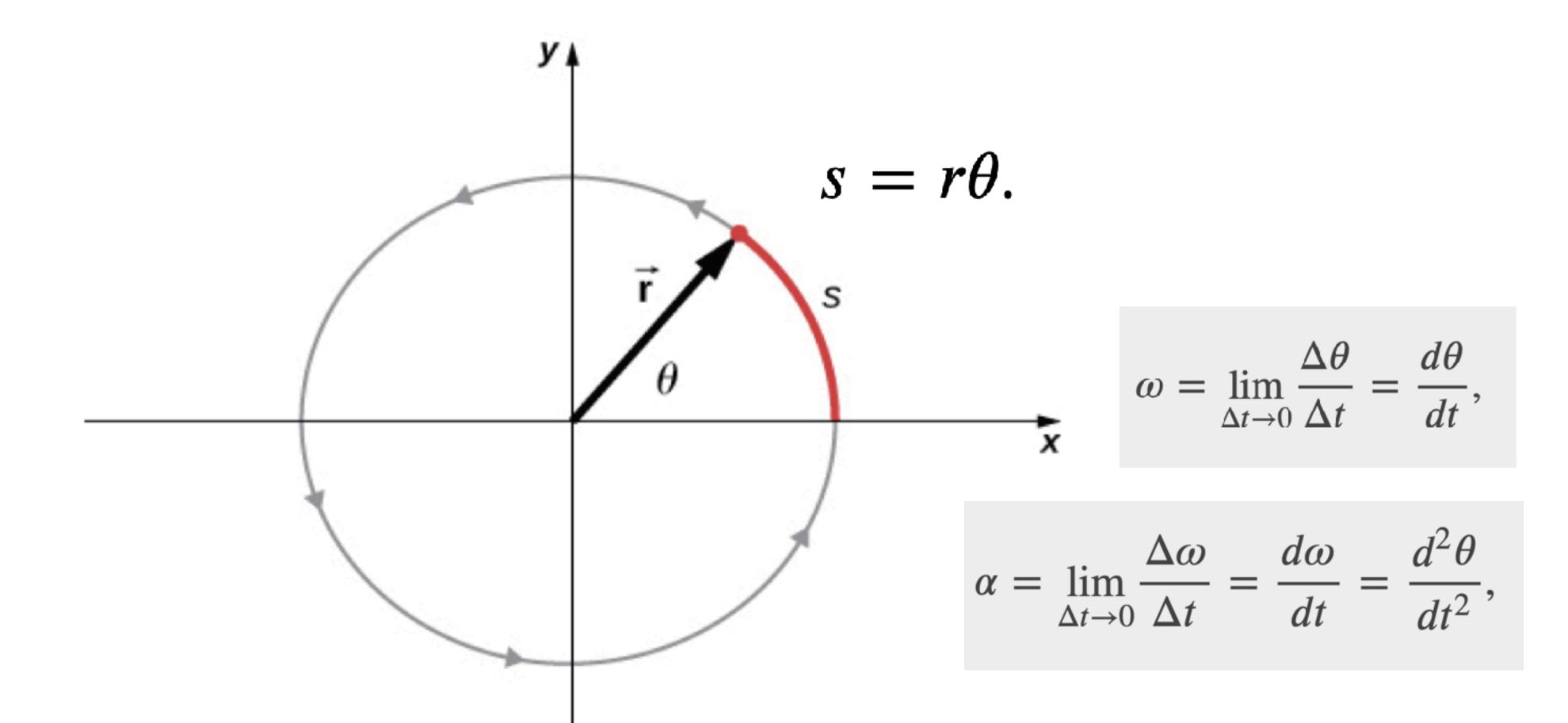
Rotational Motion

In Figure 10.2, we show a particle moving in a circle. The coordinate system is fixed and serves as a frame of reference to define the particle's position. Its position vector from the origin of the circle to the particle sweeps out the angle θ , which increases in the counterclockwise direction as the particle moves along its circular path. The angle θ is called the angular position of the particle. As the particle moves in its circular path, it also traces an arc length s.



Rotational Motion

In Figure 10.2, we show a particle moving in a circle. The coordinate system is fixed and serves as a frame of reference to define the particle's position. Its position vector from the origin of the circle to the particle sweeps out the angle θ , which increases in the counterclockwise direction as the particle moves along its circular path. The angle θ is called the angular position of the particle. As the particle moves in its circular path, it also traces an arc length s.



Rotational Motion

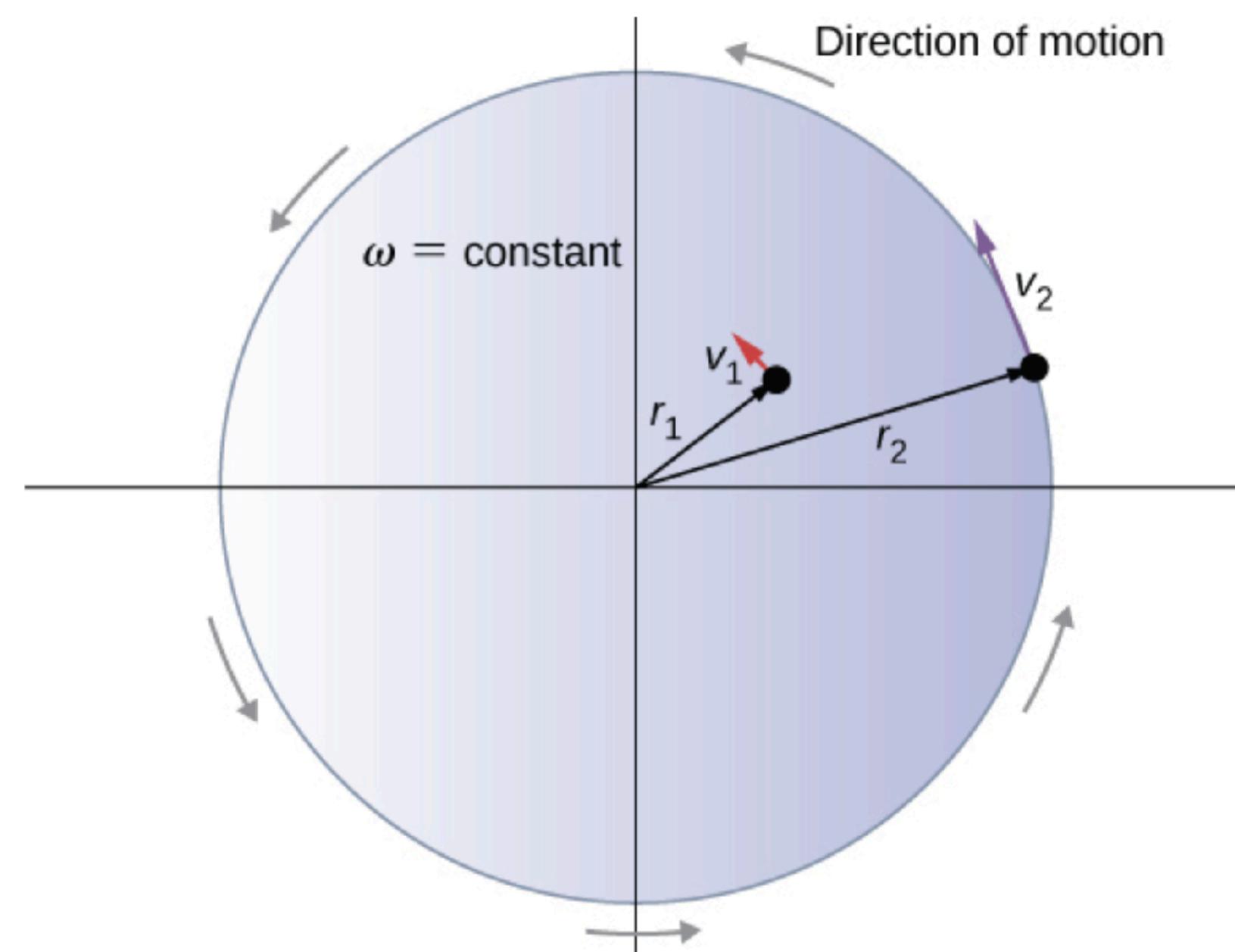
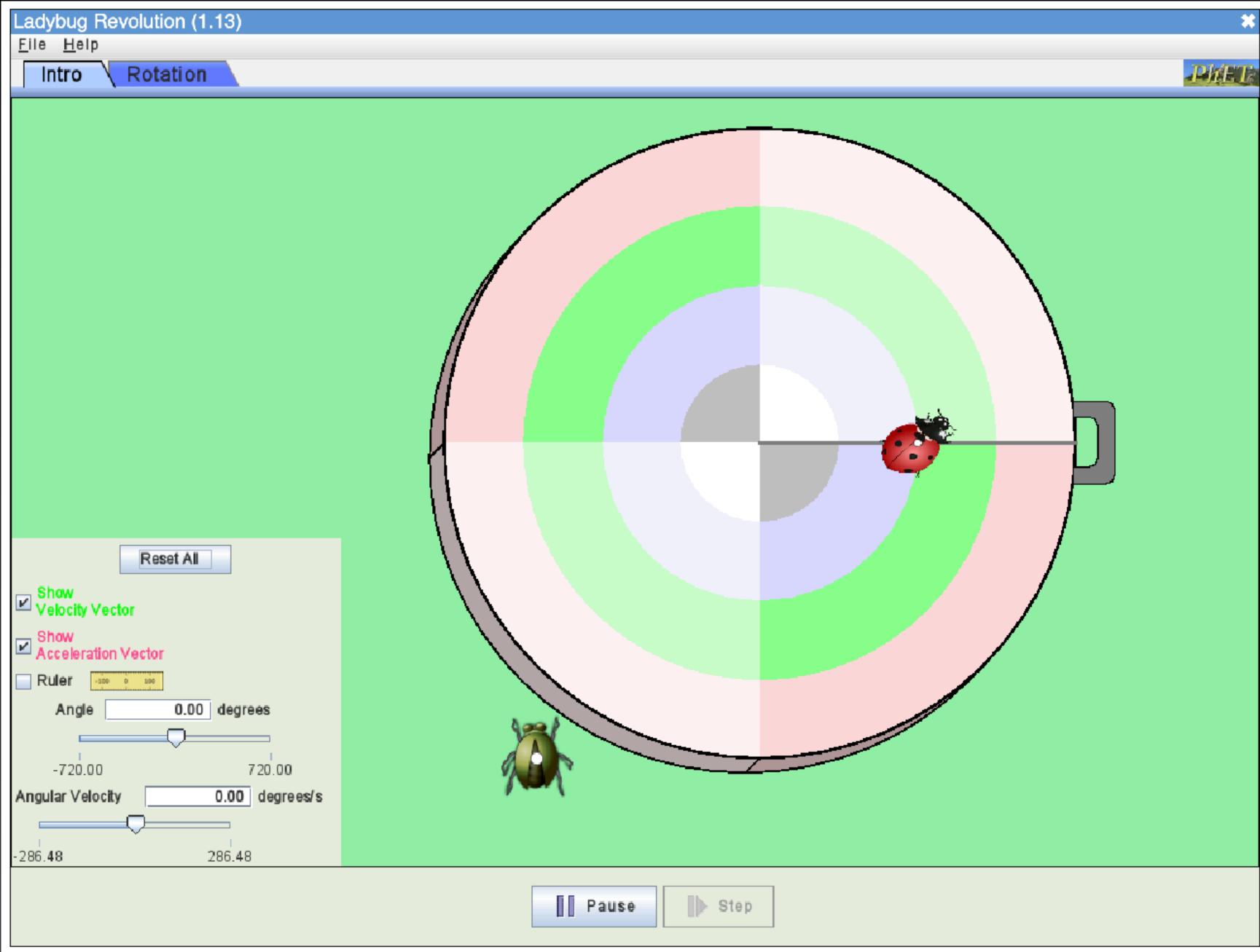


Figure 10.4 Two particles on a rotating disk have different tangential speeds, depending on their distance to the axis of rotation.

Rotating Disk



Link to PHET Simulation: <u>https://phet.colorado.edu/sims/cheerpj/rotation/latest/rotation.html?simulation=rotation</u>

Rotating Disk

Table 10.2 Rotational and Translational Kinematic Equations

Rotational Analogues

Translational

$$x = x_0 + \overline{v}t$$

$$v_f = v_0 + at$$

$$x_f = x_0 + v_0t + \frac{1}{2}at^2$$

$$v_f^2 = v_0^2 + 2a(\Delta x)$$

Rotational

$$\theta_{\rm f} = \theta_0 + \bar{\omega}t$$

$$\omega_{\rm f} = \omega_0 + \alpha t$$

$$\theta_{\rm f} = \theta_0 + \omega_0 t + \frac{1}{2} \alpha t^2$$

$$\omega_{\rm f}^2 = \omega_0^2 + 2\alpha(\Delta\theta)$$

 Table 10.2 Rotational and Translational Kinematic Equations

Rotational Analogues

Translational
$x = x_0 + \overline{v}t$
$v_{\rm f} = v_0 + at$
$x_{\rm f} = x_0 + v_0 t + \frac{1}{2}at^2$
$v_{\rm f}^2 = v_0^2 + 2a(\Delta x)$

Table 10.4 Rotational and Translational Kinetic Energies and Inertia

Rotational Analogues

Translational	
m	
$K = \frac{1}{2}mv^2$	

Rotational $I = \sum m_j r_j^2$ $K = \frac{1}{2}I\omega^2$

Table 10.4 Rotational and Translational Kinetic Energies and Inertia

Rotational Analogues

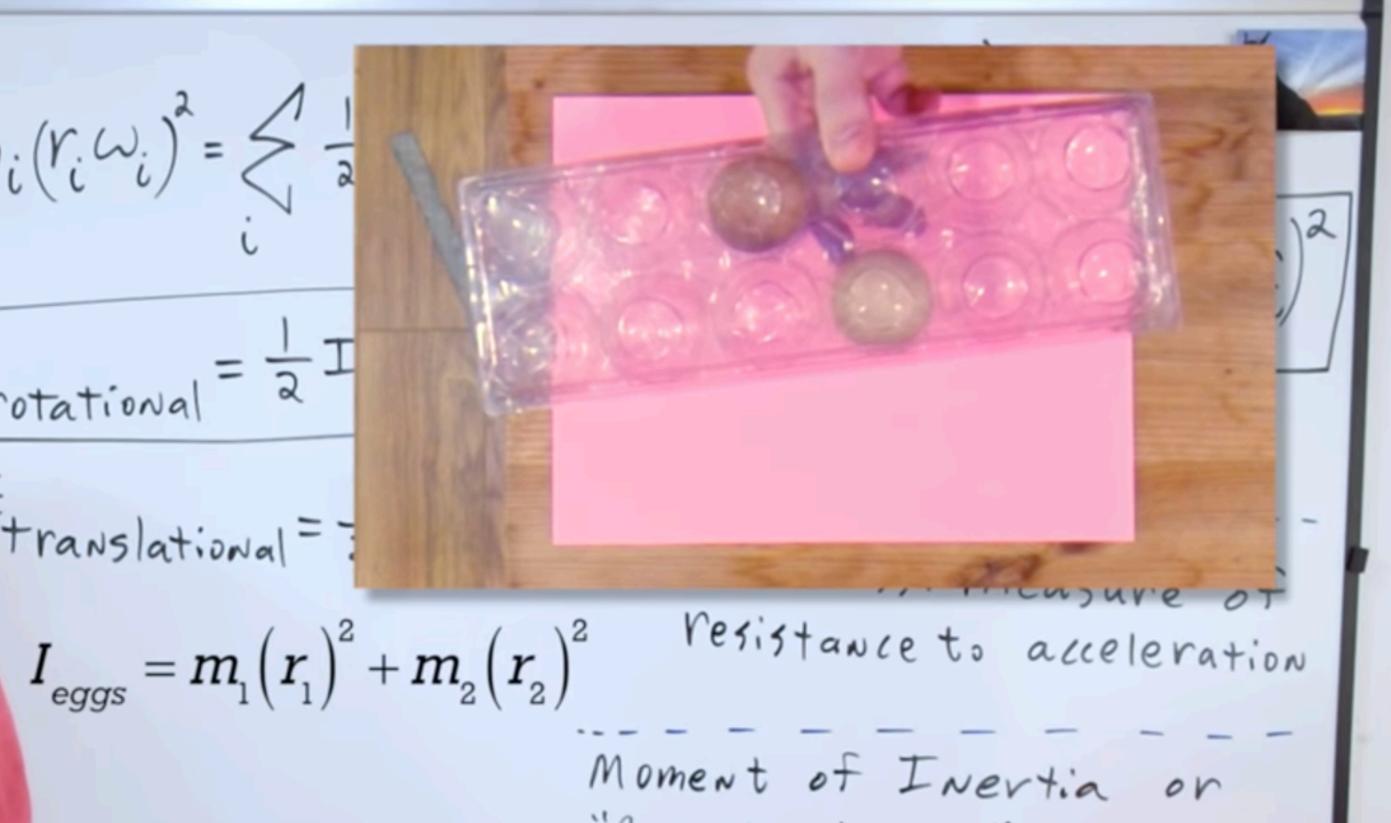
Translational
m
$K = \frac{1}{2}mv^2$

We'll talk about this on Wednesday - for now, just think of it as "rotational mass", I

What is a moment of Inertia?

 $KE = \frac{1}{2}mv^2 \quad V_t = r\omega$ $\left(V_{i}\right)^{2} = \left\{\frac{1}{2}m_{i}\left(r_{i}\omega_{i}\right)^{2}\right\} = \left\{\frac{1}{2}m_{i}\left(r_{i}\omega_{i}\right)^{2}\right\}$ $KE_{total} = \leq KE_i = \leq$ K=> Particle di KErotational = 2 I from Axis of KE + ranslational = ? "Rigid object with means W: 6

Deriving Rotational Kinetic Energy



"Rotational Mass": Measure of resistance to angular acceleration

Work in Rotational Motion

WORK-ENERGY THEOREM FOR ROTATION

The work-energy theorem for a rigid body rotating around a fixed axis is $W_{AB} = I$

where

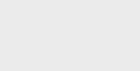
Κ

and the rotational work done by a net force rotating a body from point A to point B is

$$W_{AB} = \int_{\theta_A}^{\theta_B} \left(\sum_i \tau_i\right) d\theta.$$

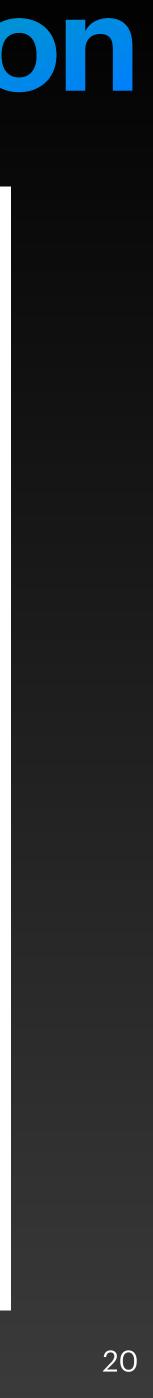
$$K_B - K_A$$

$$=\frac{1}{2}I\omega^2$$



10.29

10.30



EXAMPLE 10.17

Rotational Work and Energy

A $12.0 \text{ N} \cdot \text{m}$ torque is applied to a flywheel that rotates about a fixed axis and has a moment of inertia of $30.0 \text{ kg} \cdot \text{m}^2$. If the flywheel is initially at rest, what is its angular velocity after it has turned through eight revolutions?

Strategy

We apply the work-energy theorem. We know from the problem description what the torque is and the angular displacement of the flywheel. Then we can solve for the final angular velocity.

EXAMPLE 10.17

Rotational Work and Energy

A 12.0 N · m torque is applied to a flywheel that rotates about a fixed axis and has a moment of inertia of $30.0 \, \text{kg} \cdot \text{m}^2$. If the flywheel is initially at rest, what is its angular velocity after it has turned through eight revolutions?

Strategy

We apply the work-energy theorem. We know from the problem description what the torque is and the angular displacement of the flywheel. Then we can solve for the final angular velocity.

Solution

The flywheel turns through eight revolutions, which is 16π radians. The work done by the torque, which is constant and therefore can come outside the integral in Equation 10.30, is

$$W_{AB} = \tau(\theta_B - \theta_A).$$

We apply the work-energy theorem:

$$W_{AB} = \tau(\theta_B - \theta_A) = \frac{1}{2}I\omega_B^2 - \frac{1}{2}I\omega_A^2.$$

With $\tau = 12.0 \text{ N} \cdot \text{m}$, $\theta_B - \theta_A = 16.0\pi \text{ rad}$, $I = 30.0 \text{ kg} \cdot \text{m}^2$, and $\omega_A = 0$, we have

12.0 N-m(16.0
$$\pi$$
 rad) = $\frac{1}{2}(30.0 \text{ kg} \cdot \text{m}^2)(\omega_B^2) - 0.$

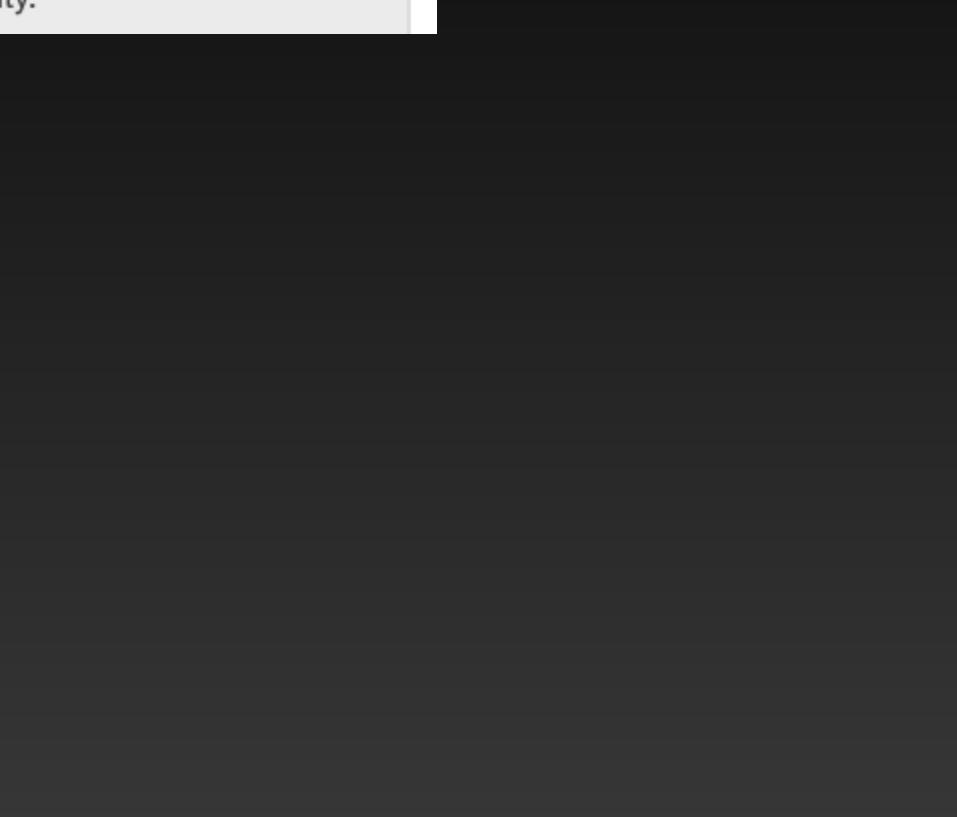
Therefore,

$$\omega_B = 6.3 \text{ rad/s.}$$

This is the angular velocity of the flywheel after eight revolutions.

Significance

The work-energy theorem provides an efficient way to analyze rotational motion, connecting torque with rotational kinetic energy.



Example

 $P = \tau \omega$.

of doing work,

If we have a constant net torque, Equation 10.25 becomes $W = \tau \theta$ and the power is

Power in Rotational Motion

10.31

to rotational motion. From Work and Kinetic Energy, the instantaneous power (or just power) is defined as the rate

$$P = \frac{dW}{dt}.$$

$$P = \frac{dW}{dt} = \frac{d}{dt}(\tau\theta) = \tau\frac{d\theta}{dt}$$

Rotational

Rotational Analogues

Translational

$$\sum_{i} \vec{\mathbf{F}}_{i} = m\vec{\mathbf{a}}$$

$$W = \int \vec{\mathbf{F}} \cdot d\vec{\mathbf{s}}$$

$$P = \vec{\mathbf{F}} \cdot \vec{\mathbf{v}}$$

Rotational

$$\sum_i \tau_i = I\alpha$$

$$W_{AB} = \int_{\theta_A}^{\theta_B} \left(\sum_i \tau_i\right) d\theta$$

 $P = \tau \omega$

Rotational Analogues

Translational

$$\sum_{i} \vec{\mathbf{F}}_{i} = m\vec{\mathbf{a}}$$

$$W = \int \vec{\mathbf{F}} \cdot d\vec{\mathbf{s}}$$

$$P = \vec{\mathbf{F}} \cdot \vec{\mathbf{v}}$$

Angular position	
Angular velocity	
Tangential speed	
Angular acceleration	
Tangential acceleration	
Average angular velocity	
Angular displacement	
Angular velocity from constant angular acceleration	
Angular velocity from displacement and constant angular acceleration	
Change in angular velocity	
Total acceleration	

Key Equations

$$\theta = \frac{s}{r}$$

$$\omega = \lim_{\Delta t \to 0} \frac{\Delta \theta}{\Delta t} = \frac{d\theta}{dt}$$

$$\upsilon_{t} = r\omega$$

$$\alpha = \lim_{\Delta t \to 0} \frac{\Delta \omega}{\Delta t} = \frac{d\omega}{dt} = \frac{d^{2}\theta}{dt^{2}}$$

$$a_{t} = r\alpha$$

$$\overline{\omega} = \frac{\omega_{0} + \omega_{f}}{2}$$

$$\theta_{f} = \theta_{0} + \overline{\omega}t$$

$$\omega_{f} = \omega_{0} + \alpha t$$

$$\theta_{f} = \theta_{0} + \omega_{0}t + \frac{1}{2}\alpha t^{2}$$

$$\omega_{f}^{2} = \omega_{0}^{2} + 2\alpha(\Delta\theta)$$

$$\vec{a} = \vec{a}_{c} + \vec{a}_{t}$$

Rotational kinetic energy

Moment of inertia

Rotational kinetic energy in terms of the moment of inertia of a rigid body

Moment of inertia of a continuous object

Parallel-axis theorem

Moment of inertia of a compound object

Key Equations

$$K = \frac{1}{2} \left(\sum_{j} m_{j} r_{j}^{2} \right) \omega^{2}$$

$$I = \sum_{j} m_{j} r_{j}^{2}$$

$$K = \frac{1}{2} I \omega^{2}$$

$$I = \int r^{2} dm$$

$$I_{\text{parallel-axis}} = I_{\text{center of mass}} + m d^{2}$$

$$I_{\text{total}} = \sum_{i} I_{i}$$

Torque vector

Magnitude of torque

Total torque

Newton's second law for rotation

Incremental work done by a torque

Work-energy theorem

Rotational work done by net force

Rotational power

Key Equations

$$\vec{\tau} = \vec{r} \times \vec{F}$$

$$|\vec{\tau}| = r_{\perp}F$$

$$\vec{\tau}_{net} = \sum_{i} |\vec{\tau}_{i}|$$

$$\sum_{i} \tau_{i} = I\alpha$$

$$dW = \left(\sum_{i} \tau_{i}\right) d\theta$$

$$W_{AB} = K_{B} - K_{A}$$

$$W_{AB} = \int_{\theta_{A}}^{\theta_{B}} \left(\sum_{i} \tau_{i}\right) d\theta$$

$$P = \tau\omega$$

See you next class!

license.

Attribution

- This resource was significantly adapted from the <u>Open Stax Instructor</u>
- <u>Slides</u> provided by Rice University. It is released under a CC-BY 4.0

- —— Original resource license ——
- OpenStax ancillary resource is © Rice University under a CC-BY 4.0 International license; it may be reproduced or modified but must be
- attributed to OpenStax, Rice University and any changes must be noted.

