Physics 111 - Class 11A Momentum & Impulse November 14, 2022

- O Logistics / Announcements
- Chapter 9 Section Summary
- **Collision Carts Demo**
- Collision Types and Zero Momentum Frame (ZMF)
- **Clicker Questions**
- Worked Problems

WATCH & MEET

THURSDAY 17 NOVEMBER | 8:45 PM

Black Panther 2 Orchard Plaza Cineplex

Open to Black UBC Studens. Faculty, Staff, Alumni RSVP BY NOV 15th

Back Panther 2

The long awaited sequel to Black Panther is here! As a community, what better way to experience it than together? There's opportunity for us to gather both in Vancouver and Kelowna. See below based on your location;

Okanagan

Offering **30FREE** tickets, on first-come first-served for a general screening on Thursday, November 17th at 8:45pm. Priority will be given to black UBC student, faculty staff. +1 may be permitted based on availability. You will need to pick up your ticket from Larita or Samaya at UBCO. More details will be shared on ticket pick up/delivery to registrants. Note that this will not be a private screening

What: General Screening of Black Panther 2 When: Thursday, November 17th Location: Orchard Plaza Cineplex- 2080 Springfield Rd Time: Showing at 8:45PM sharp! Cost: Free movie ticket (concessions not included) to Black UBC students, faculty, staff and alumni

Note that we have a limited availability for tickets so RSVP quickly!

Dress code (encouraged but not enforced): white [in homage to the late Chadwick Boseman], African/African inspired attire, for the culture attire

Limited availability- Please RSVP here by November 15th

Jan 20 **CCUWiP 2023 Registration**

The Canadian Conference for Undergraduate Women in Physics (CCUWiP) is a national conference gathering physics students and professionals

By Canadian Association of Physicists

51 followers Follow

When and where

Location

University of Regina 3737 Wascana Parkway Regina, SK S4S 0A2

Hide map 🔥

 \heartsuit

\$0-\$63

Reserve a spot

Logistics/Announcements

- Lab this week: Lab 7
- HW9 due this week on Thursday at 6 PM
- Learning Log 9 due on Saturday at 6 PM
- HW and LL deadlines have a 48 hour grace period
- Test 4 available on Friday this week
 - Remember, **Test 4 will be done online!**

Physics 111

Q Search this book...

Unsyllabus

ABOUT THIS COURSE

Course Syllabus (Official)

Course Schedule

Accommodations

How to do well in this course

GETTING STARTED

Before the Term starts

After the first class

In the first week

Week 1 - Introductions!

PART 1 - KINEMATICS

Week 2 -	Chapter 2	×
----------	-----------	---

Week 3 - Chapter 3 \mathbf{v}

 \mathbf{v}

 \mathbf{v}

Week 4 - Chapter 4 \sim

PART 2 - DYNAMICS

Week 5 - Chapter 5

Week 6 - Week Off !!

Required Videos

🗄 Contents 🛩

- Checklist of items
- Video 1
- Video 2
- Video 3
- Video 4
- Video 5
- Video 6
- Video 7
- Video 8
- Video 9
- Video 10

Monday's Class

9.1 Linear Momentum9.3 Conservation of Linear Momentum9.4 Types of Collisions

- "Kinetic Energy" is a characteristic of the object's mass and velocity²
- object's **position**.
- ulletdirection of velocity vectors
- For that, we need a new quantity... ullet

MOMENTUM

The momentum p of an object is the product of its mass and its velocity:

Vomentum

• "Potential Energy" is a different form of energy that's characteristic of the

As powerful as Energy is, it cannot help us solve many problems, such as the

$$= m \vec{\mathbf{v}}.$$

9.1

- ν)
- The total momentum of a "system" is **conserved** if:
 - Net external force on the system is O
- Momentum is yet another accounting system that

Properties of Momentum

Momentum is a vector quantity (it has a direction from

Total mass of the system remains constant

helps us solve problems with collisions and explosions.

Collision Carts Simulation

Colision Carts

A system (mechanical) is the collection of objects in whose motion (kinematics and dynamics) you are interested. If you are analyzing the bounce of a ball on the ground, you are probably only interested in the motion of the ball, and not of Earth; thus, the ball is your system. If you are analyzing a car crash, the two cars together compose your system (Figure 9.15).

Before

net $\vec{F} = \vec{0}$

Figure 9.15 The two cars together form the system that is to be analyzed. It is important to remember that the contents (the mass) of the system do not change before, during, or after the objects in the system interact.

The "System"

A system of objects that meets these two requirements is said to be a **closed system** (also called an isolated system). Thus, the more compact way to express this is shown below.

LAW OF CONSERVATION OF MOMENTUM

The total momentum of a closed system is conserved:

This statement is called the Law of Conservation of Momentum. Along with the conservation of energy, it is one of the foundations upon which all of physics stands. All our experimental evidence supports this statement: from the motions of galactic clusters to the quarks that make up the proton and the neutron, and at every scale in between. In a closed system, the total momentum never changes.

Conservation of Momentum

 $\sum \vec{p}_j = \text{constant.}$

Solving Conservation of Momentum problems

PROBLEM-SOLVING STRATEGY

Conservation of Momentum

Using conservation of momentum requires four basic steps. The first step is crucial:

- 1. Identify a closed system (total mass is constant, no net external force acts on the system).
- (explosion or collision).

2. Write down an expression representing the total momentum of the system before the "event"

Write down an expression representing the total momentum of the system after the "event." 4. Set these two expressions equal to each other, and solve this equation for the desired quantity.

EXAMPLE 9.7

A Bouncing Superball

A superball of mass 0.25 kg is dropped from rest from a height of h = 1.50 m above the floor. It bounces with no loss of energy and returns to its initial height (Figure 9.17).

- a. What is the superball's change of momentum during its bounce on the floor?
- b. What was Earth's change of momentum due to the ball colliding with the floor?
- c. What was Earth's change of velocity as a result of this collision?

(This example shows that you have to be careful about defining your system.)

 There are several possibilities of interaction between objects if momentum is conserved:

objects "interact"; let's avoid labeling them for now...

Before Collision

Types of Collisions

A

Let's brainstorm all the possible options that can occur if two

B

In elastic collisions all of the energy remains as kinetic energy — no energy is lost to other forms. This means that both kinetic energy and momentum are conserved.

Figure 2: An elastic collision between two particles.

Figure 2 shows a simple case. Before the collision, particle A with mass m_A is moving towards particle B with a speed u_A , while particle B with mass $m_{\rm B}$ is moving towards particle B with a speed $u_{\rm B}$. The collision is elastic, so both momentum and kinetic energy must be conserved.

Eastic Colisions

In inelastic collisions, some kinetic energy is converted to another form. In fully inelastic collisions the maximum possible kinetic energy is lost and the objects stick together. However in many inelastic collisions this is not the case — only some kinetic energy is lost.

In an inelastic collision:

Kinetic Energy before collision = Kinetic Energy after collision + Energy converted into other forms

We can use this along with the conservation of momentum, which is always conserved, to work out the motion of objects after the collision.

Figure 3: An inelastic collision between two particles, releasing X J of sound and heat.

Figure 3 shows an inelastic collision between two particles, both of mass m, in which $\Delta K = X J$ of sound and heat are produced. The particle motion involved in the sound and heat has net zero momentum.

ne astic Colisions

The easiest collisions to analyse are completely inelastic collisions, where objects stick together after colliding. The two objects have the same final velocity, which we can calculate by conservation of momentum.

Energy is converted into other forms in the collision, so we don't have to worry about conserving kinetic energy.

Figure 1: A completely inelastic collision between two particles.

Figure 1 shows a simple case. Before the collision, particle A with mass m_A is moving towards particle B with a speed u_A , and particle B with mass $m_{\rm B}$ is moving towards particle A with a speed $u_{\rm B}$. The total momentum (taking to the right as positive) is $p = m_A u_A - m_B u_B$.

Completely Inelastic Collisions

It is also possible to increase the kinetic energy after a "collision" if another form of energy is converted into kinetic energy. This commonly occurs in explosions, in which chemical energy is converted into kinetic energy. In this case:

Kinetic Energy before collision + Chemical energy released during explosion = Kinetic Energy after collision.

Figure 4: An explosion in which a mass m splits into two equal masses of mass m/2.

 $\underline{v}_{\mathsf{R}}$, releasing $\Delta K = X \operatorname{J}$ of kinetic energy.

EXPOSIONS

Figure 4 shows an explosion where a stationary mass m splits into two equal masses of mass $\frac{m}{2}$, with velocities \underline{v}_{A} and

Solving Problems in the Zero Momentum Frame

The previous section described an elastic collision between two particles in the zero momentum frame (ZMF). After the collision, they move away from each other with the same speeds as they had before the collision. This can be used to solve collision problems in other frames without having to solve simultaneous equations for conservation of energy and momentum. This is why the ZMF is useful.

The laboratory frame is the frame in which the collision happens as viewed by a stationary scientist watching the event. The ZMF is a frame moving at a specific velocity - think of it as an observer moving at this speed. More detail on moving between frames of reference can be found at the Frames of Reference concept page.

We start by looking at an elastic head-on 1D collision involving particle A of mass $m_A = m$ travelling with an initial velocity \underline{u} , and a stationary particle B of mass $m_{\rm B} = 2m$, as shown in Figure 7.

Figure 7: A 1D collision using the Zero Momentum Frame to solve the problem.

The first thing to do is calculate the speed of the ZMF. In the ZMF the particles will have speeds $u_{A,ZMF} = u_A - v_{ZMF}$ and $u_{\text{B,ZMF}} = u_{\text{B}} - v_{\text{ZMF}}$. The total momentum in the horizontal direction, which must sum to zero in the ZMF, would be given by

$$p_x = m_{\mathsf{A}} u_{\mathsf{A},\mathsf{ZMF}} + m_{\mathsf{B}} u_{\mathsf{B},\mathsf{ZMF}} = m_{\mathsf{A}} (u_{\mathsf{A}} - v_{\mathsf{ZMF}}) + m_{\mathsf{B}} (u_{\mathsf{B}} - v_{\mathsf{ZMF}}) = 0$$

Re-arranging this gives:

$$egin{aligned} v_{\mathsf{ZMF}} &= rac{m_{\mathsf{A}} u_{\mathsf{A}} + m_{\mathsf{B}} u_{\mathsf{B}}}{m_{\mathsf{A}} + m_{\mathsf{B}}} \ &= rac{m u}{m u} \ &= rac{m u}{m + 2m} \ &= rac{u}{3} \end{aligned}$$

so in the ZMF particle A has a speed of $u_{A,ZMF} = \frac{2u}{3}$ and is moving to the right and particle B has a speed of $u_{B,ZMF} = \frac{u}{3}$ and is moving to the left, as shown in the bottom left corner of Figure 7.

As the collision is elastic, both energy and momentum are conserved, and so we know that in the ZMF the particles bounce off each other with the same speeds but different directions, as shown in the bottom right hand corner of Figure 7.

To move back into the lab frame, we add v_{ZMF} to the velocities of each particle. This gives us a final velocity of particle A of $\underline{v}_A = -\frac{2\underline{u}}{3} + \frac{\underline{u}}{3} = -\frac{\underline{u}}{3}$ and the final velocity of particle B is $\underline{v}_B = \frac{\underline{u}}{3} + \frac{\underline{u}}{3} = \frac{2\underline{u}}{3}$.

What are elastic and inelastic collisions?

Collisions can be elastic or inelastic. Learn about what's conserved and not conserved during elastic and inelastic collisions.

Additional Reference

Login Donate

Definition of momentum	
Impulse	$ec{J}\equiv$
Impulse-momentum theorem	$\vec{\mathbf{J}} = \mathbf{J}$
Average force from momentum	$\vec{\mathbf{F}} =$
Instantaneous force from momentum (Newton's second law)	
Conservation of momentum	$\frac{d\vec{\mathbf{p}}_1}{dt}$ -
Generalized conservation of momentum	$\sum_{j=1}^{N} \vec{p}$
Conservation of momentum in two dimensions	$p_{\mathrm{f},x} = p_{\mathrm{f},y} =$

Key Equations

\vec{mv}

$$\int_{t_{i}}^{t_{i}} \vec{F}(t)dt \text{ or } \vec{J} = \vec{F}_{ave} \Delta t$$

$$\Delta \vec{p}$$

$$\frac{\Delta \vec{p}}{\Delta t}$$

$$= \frac{d\vec{p}}{dt}$$

$$+ \frac{d\vec{p}_{2}}{dt} = 0 \text{ or } \vec{p}_{1} + \vec{p}_{2} = \text{constant}$$

$$\vec{p}_{j} = \text{constant}$$

$$= p_{1,i,x} + p_{2,i,x}$$

$$= p_{1,i,y} + p_{2,i,y}$$

External forces	F _{ext} =
Newton's second law for an extended object	$\vec{\mathbf{F}} =$
Acceleration of the center of mass	a _{CM}
Position of the center of mass for a system of particles	r _{CM} ∶
Velocity of the center of mass	v _{CM}
Position of the center of mass of a continuous object	r _{CM} ∶
Rocket equation	$\Delta v =$

Key Equations

What is the momentum of a bowling ball with mass $5 \, kg$ and velocity $10 \, m/s$?

- a) $0.5 \text{ kg} \cdot \text{m/s}$
- b) $2 \text{kg} \cdot \text{m/s}$
- c) $15 \text{ kg} \cdot \text{m/s}$
- d) $50 \text{ kg} \cdot \text{m/s}$

of the net force acting on it?

- It is zero, because the net force is equal to the rate of change a) of the momentum.
- It is zero, because the net force is equal to the product of the b) momentum and the time interval.
- It is nonzero, because the net force is equal to the rate of C) change of the momentum.
- It is nonzero, because the net force is equal to the product of d) the momentum and the time interval.

When the momentum of an object increases with respect to time, what is true

Activity: **Worked Problems**

35. Train cars are coupled together by being bumped into one another. Suppose two loaded train cars are moving toward one another, the first having a mass of 1.50×10^5 kg and a velocity of $(0.30 \text{ m/s})\hat{i}$, and the second having a mass of 1.10×10^5 kg and a velocity of $-(0.12 \text{ m/s})\hat{i}$. What is their final velocity?

See you next class!

license.

Attribution

- This resource was significantly adapted from the <u>Open Stax Instructor</u>
- <u>Slides</u> provided by Rice University. It is released under a CC-BY 4.0

- —— Original resource license ——
- OpenStax ancillary resource is © Rice University under a CC-BY 4.0 International license; it may be reproduced or modified but must be
- attributed to OpenStax, Rice University and any changes must be noted.

