You can draw here

Physics 111 - Class 13A Angular Momentum November 29, 2021

Do not draw in/on this box!

You can draw here

You can draw here

O Logistics / Announcements

• Test 5 Reflection

Angular Momentum Summary

\bigcirc Clicker Questions

Worked Problems

Labs are done!!

HWs are done!!

Last Learning Log 11 due on Saturday at 6 PM

Test/Bonus Test: Bonus Test 5 available this week (Chapter 9)

Logistics/Announcements

Test 4 Reflection

Number of students

Mean score

- Time was not a factor
- Several conceptual questions
- Will go over Question 9 together

250 61%

Q9: Head-on Collision of Carts

A cart of relative mass 9m (Cart 1) moving with velocity $ec{v_0} = ($ 19.5 $m/s) \hat{\imath}$ collides head-on with a cart of relative mass 6 m (Cart 2) that is initially at rest. Ignore friction.

Part 1				
If the collision is perfectly inelastic, what is the final velocity of the two carts?				
v = number (rtol=0.05, atol=1e-08)	$(m/s) \ \hat{\imath}$			
Part 2				
If the collision is elastic, what is the final velocity of Cart 1 (with mass 9 m).				
$v_f =$ number (rtol=0.05, atol=1e-08)	$(m/s) \ \hat{\imath}$			
Part 3				
If the collision is elastic, what is the final velocity of Cart 2 (with mass 6 m).				
$v_f =$ number (rtol=0.05, atol=1e-08)	$(m/s) \ \hat{\imath}$			

Q9: Head-on Collision of Carts

A cart of relative mass 9m (Cart 1) moving with velocity $ec{v_0} = ($ 19.5 $m/s) \hat{\imath}$ collides head-on with a cart of relative mass 6 m (Cart 2) that is initially at rest. Ignore friction.

Part 1
If the collision is perfectly inelastic, what is the final velocity of the two carts? $v = $ number (rtol=0.05, atol=1e-08) $(m/s) \hat{\imath}$
Part 2
If the collision is elastic, what is the final velocity of Cart 1 (with mass 9 m). $v_f = $ number (rtol=0.05, atol=1e-08) (m/s) $\hat{\imath}$
Part 3
If the collision is elastic, what is the final velocity of Cart 2 (with mass 6 m).
$v_f=$ number (rtol=0.05, atol=1e-08) $(m/s) \ \hat{\imath}$

Sample Student Submission

10		
9.	Va Vi	
	$m_1 \rightarrow m_2$	
	m= 4m 1) perfectly inelastic	2) elastic, m. Vi: + Vif =
	$M_2 = 7m$ $\overline{p_1} = \overline{p_2}$	$\overline{p_i} = \overline{p_2}$ $V_{ii} + V_{ij} = V_{ij}$
	Vo= 7.84m/s m, Vo= m-V2	$m_1 V_0 = m_1 V_1 + m_2 V_2 $
	$V_1 = 0.0 \text{ m/s}$ $\overline{V_2} = m_1 \overline{V_0}$	$m_1 V_0 = m_1 V_1 + m_2 (V_0 + V_1)$
47=	$m_{T} = 11m$ m_{T}	$m_1 V_0 = m_1 V_1 + m_2 V_1 + m_2$
	= 46(7.84)	$m_1 v_1 + m_2 v_1 = m_1 v_0 - m_2 v_0$
	1197	$V(m,+m_2) = V_D(m,-m_2)$
	= 2.851m/s	$V_1 = V_0(m_1 - m_2)$
		mitmz
	3) elastic, M2	= 7.84 (4-7)
	$V_{2F} = V_{i} + V_{iF}$	(4+7)
	= 7.84 + (-2.1382)	= -2.13818 m
	= 5.7018m/s	
The second se		

	2
	-
	-
	-
V2:+ V25	-
V2f	
	1
)	
	-
Vo	-
)	
Hink	1
10 1000 A	4
	1
	9
ls	\$
	-
	Ę

Monday's Class

11.2 Angular Momentum 11.3 Conservation of Angular Momentum

"Angular Momentum" is the rotational analogue of linear momentum

ANGULAR MOMENTUM OF A PARTICLE

the plane containing \vec{r} and \vec{p} :

 $\vec{\mathbf{l}} = \vec{\mathbf{l}}$

For a rigid body, rotating with angular velocity,

Angular Momentum

An object rotates about an axis "carries" or "has" angular momentum

The angular momentum \vec{l} of a particle is defined as the cross-product of \vec{r} and \vec{p} , and is perpendicular to

$$\vec{\mathbf{r}} \times \vec{\mathbf{p}}$$
.

Figure 11.9 In three-dimensional space, the position vector \vec{r} locates a particle in the xy-plane with linear momentum $\vec{\mathbf{p}}$. The angular momentum with respect to the origin is $\vec{l} = \vec{r} \times \vec{p}$, which is in the *z*-direction. The direction of \vec{l} is given by the right-hand rule, as shown.

Angular Momentum

PROBLEM-SOLVING STRATEGY

Angular Momentum of a Particle

- 1. Choose a coordinate system about which the angular momentum is to be calculated.
- 2. Write down the radius vector to the point particle in unit vector notation.
- 3. Write the linear momentum vector of the particle in unit vector notation.
- 4. Take the cross product $\vec{l} = \vec{r} \times \vec{p}$ and use the right-hand rule to establish the direction of the angular momentum vector.
- 5. See if there is a time dependence in the expression of the angular momentum vector. If there is, then a torque exists about the origin, and use $\frac{d\vec{l}}{dt} = \sum \vec{\tau}$ to calculate the torque. If there is no time dependence in the expression for the angular momentum, then the net torque is zero.

Properties of Angular Momentum

direction given by right hand rule system

Angular Momentum is a vector quantity,

• The total angular momentum of a "system" is conserved if there is no net torque on the

Link to Video

Angular Momentum

Link to Video

Angular Momentum Mystery?

Link to Video

SPINNING COUNTERCLOCKWISE

EACH TURN ROBS THE PLANET OF ANGULAR MOMENTUM

SPINNING COUNTERCLOCKWISE

EACH TURN ROBS THE PLANET OF ANGULAR MOMENTUM

SLOWING IT'S SPIN THE TINIEST BIT

SPINNING COUNTERCLOCKWISE

EACH TURN ROBS THE PLANET OF ANGULAR MOMENTUM

SLOWING IT'S SPIN THE TINIEST BIT

LENGTHENING THE NIGHT, PUSHING BACK THE DAWN

SPINNING COUNTERCLOCKWISE

EACH TURN ROBS THE PLANET OF ANGULAR MOMENTUM

SLOWING IT'S SPIN THE TINIEST BIT

LENGTHENING THE NIGHT, PUSHING BACK THE DAWN GIVING ME A LITTLE MORE TIME HERE

WITH YOU

LENGTHENING THE NIGHT. PUSHING BACK THE DAWN GIVING ME A LITTLE MORE TIME HERE

SLOWING IT'S SPIN THE TINIEST BIT

EACH TURN ROBS THE PLANET OF ANGULAR MOMENTUM

SPINNING COUNTERCLOCKWISE

Reminder: Everyone should try to come to Wednesday's class, we will discuss Final Exam logistics

See you next class!

license.

Attribution

- This resource was significantly adapted from the <u>Open Stax Instructor</u>
- <u>Slides</u> provided by Rice University. It is released under a CC-BY 4.0

- —— Original resource license ——
- OpenStax ancillary resource is © Rice University under a CC-BY 4.0 International license; it may be reproduced or modified but must be
- attributed to OpenStax, Rice University and any changes must be noted.

