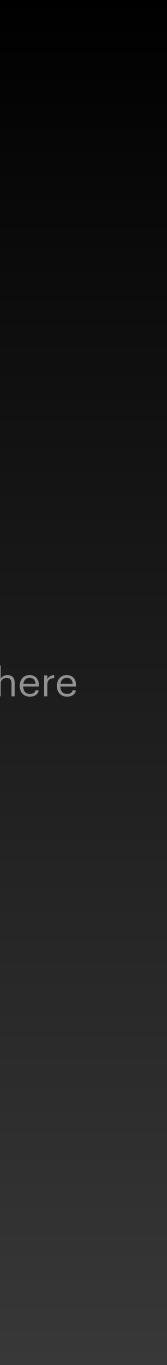
You can draw here

Physics 111 - Class 12B Fixed Axis Rotation November 24, 2021

Do not draw in/on this box!

You can draw here

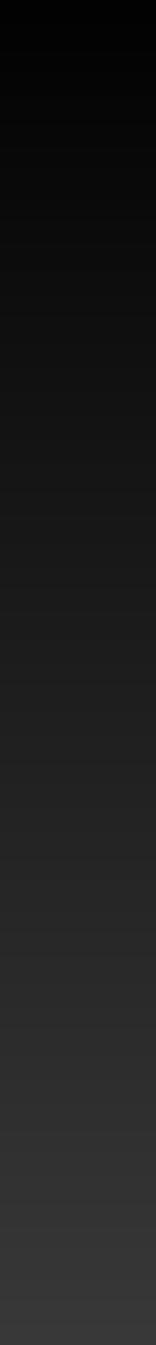
You can draw here



O Logistics / Announcements

Chapter 10 Section Summary

Output Lots of talking from me today, SORRY!



Logistics/Announcements

- Lab this week: Lab 8
- HW10 due this week on Thursday at 6 PM
- Learning Log 10 due on Saturday at 6 PM
- HW and LL deadlines have a 48 hour grace period
- Test/Bonus Test: Test 5 available this week (Chapters 8 & 9)
 - Test Window: Friday 6 PM Sunday 6 PM

Physics 111

Q Search this book...

Unsyllabus

ABOUT THIS COURSE

Course Syllabus (Official)

Course Schedule

Accommodations

How to do well in this course

GETTING STARTED

Before the Term starts

After the first class

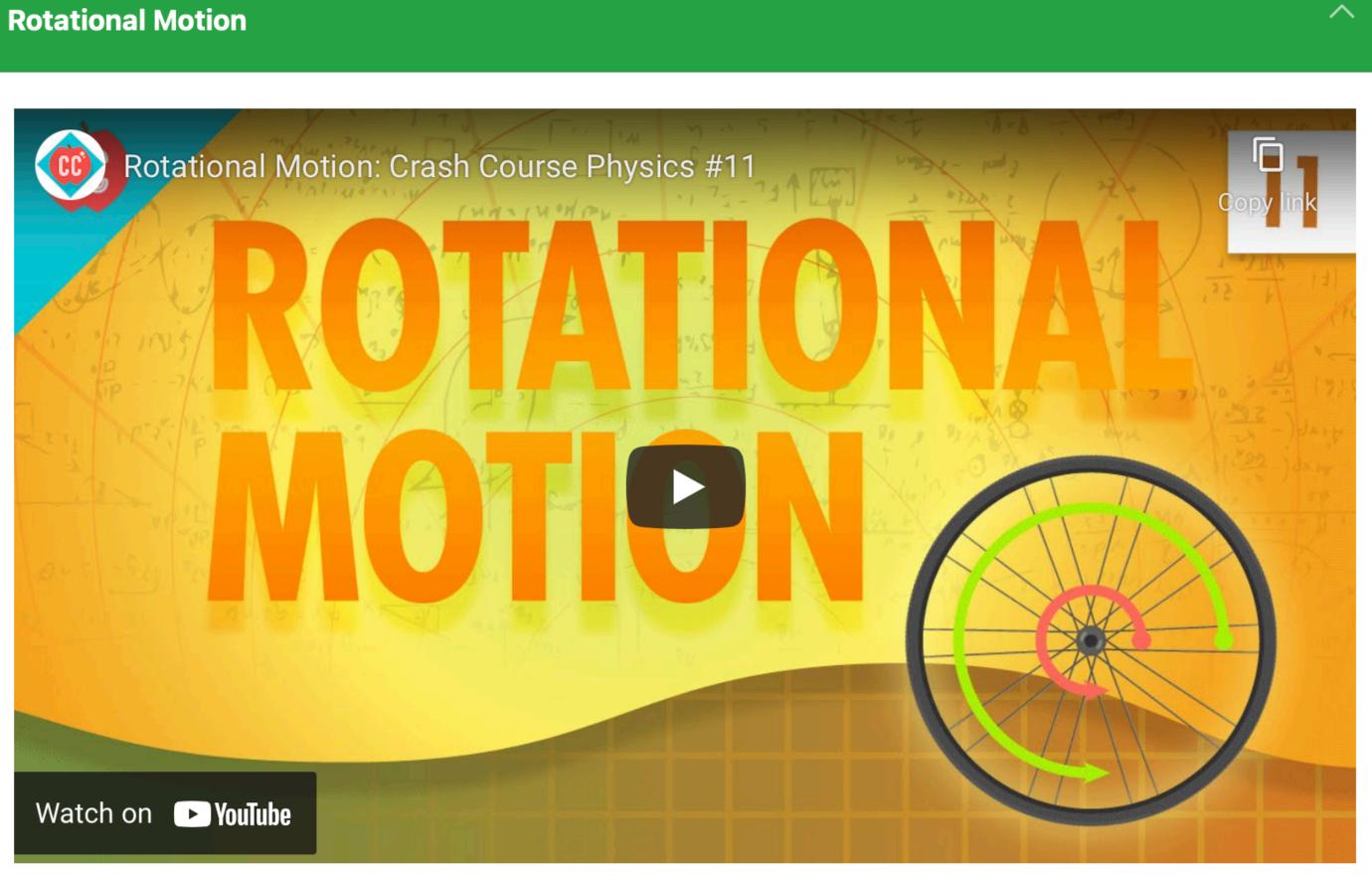
In the first week

Week 1 - Introductions!

PART 1 - KINEMATICS

Week 2 - Chap	oter 2
Week 3 - Chap	oter 3

÷

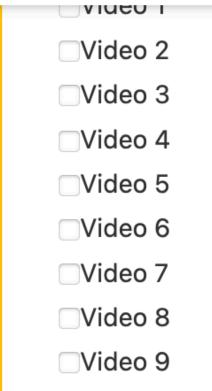


Torque

 $\mathbf{\sim}$

 $\mathbf{\sim}$

 $\mathbf{\sim}$



i ⊂ Contents ►

::

 $\boldsymbol{\wedge}$

Video 10

Introduction

∃ Table of contents

Contract Contract

Х

Preface

- Mechanics
 - I Units and Measurement
 - ▶ 2 Vectors
 - ▶ 3 Motion Along a Straight Line
 - ▶ 4 Motion in Two and Three Dimensions
 - ▶ 5 Newton's Laws of Motion
 - ▶ 6 Applications of Newton's Laws
 - ▶ 7 Work and Kinetic Energy
 - ▶ 8 Potential Energy and Conservation of Energy
 - ▶ 9 Linear Momentum and Collisions
 - ▼10 Fixed-Axis Rotation

Introduction

- 10.1 Rotational Variables
- 10.2 Rotation with Constant Angular Acceleration
- 10.3 Relating Angular and **Translational Quantities**
- 10.4 Moment of Inertia and Rotational Kinetic Energy
- 10.5 Calculating Moments of Inertia
- 10.6 Torque
- 10.7 Newton's Second Law for Rotation
- 10.8 Work and Power for **Rotational Motion**
- Chapter Review
- ▶ 11 Angular Momentum

Chapter Outline

10.1 Rotational Variables 10.2 Rotation with Constant Angular Acceleration 10.3 Relating Angular and Translational Quantities 10.5 Calculating Moments of Inertia <u>10.6 Torque</u> 10.7 Newton's Second Law for Rotation 10.8 Work and Power for Rotational Motion

In previous chapters, we described motion (kinematics) and how to change motion (dynamics), and we defined important concepts such as energy for objects that can be considered as point masses. Point masses, by definition, have no shape and so can only undergo translational motion. However, we know from everyday life that rotational motion is also very important and that many objects that move have both translation and rotation. The wind turbines in our chapter opening image are a prime example of how rotational motion impacts our daily lives, as the market for clean energy sources continues to grow.

Wed

Fri

Hi Firas 🗸

Search this book

I My highlights

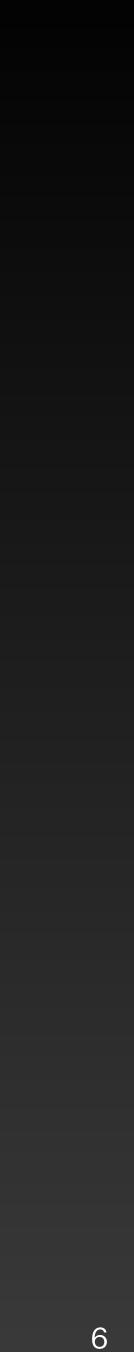
Q

Figure 10.1 Brazos wind farm in west Texas. During 2019, wind farms in the United States had an average power output of 34 gigawatts, which is enough to power 28 million homes. (credit: modification of work by U.S. Department of Energy)

10.4 Moment of Inertia and Rotational Kinetic Energy

Wednesday's Class

10.1 Rotational Variables
10.2 Rotation with Constant Angular Acceleration
10.3 Relating Angular and Translational Quantities
10.4 Moment of Inertia and Rotational Kinetic Energy
10.5 Calculating Moments of Inertia



motion" in x, y, or z

Quantities: Displacement, velocity, and acceleration

 As we become more sophisticated physicists, we realize that we have ignored "rotational motion"

• Quantities: Angular displacement, Angular velocity, Angular acceleration

Rotational Variables

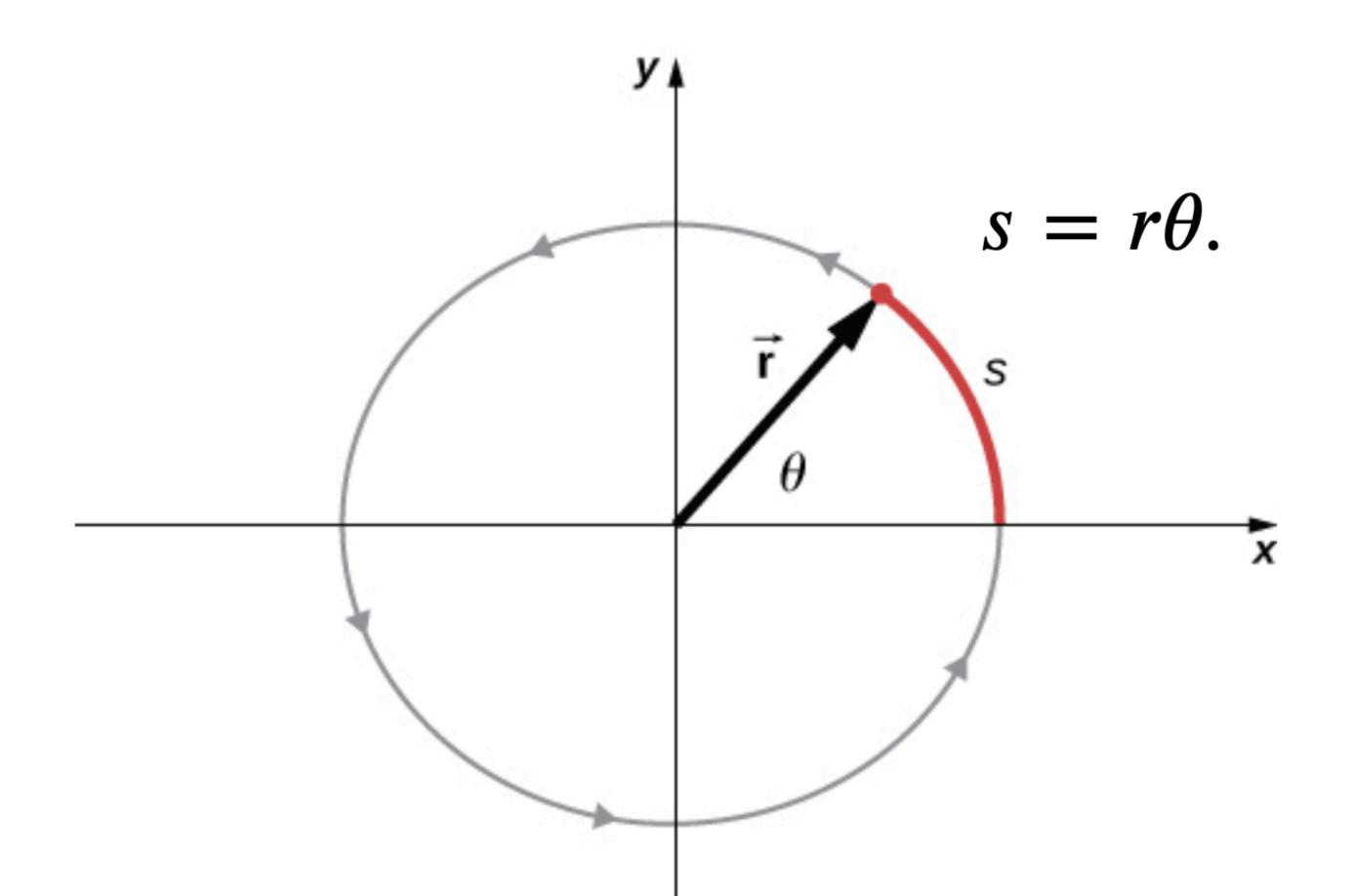
So far in this course we have mostly done "translational

Rotational	Translational	Relationship (r = radius)
heta	S	$\theta = \frac{s}{r}$
ω	v_{t}	$\omega = \frac{v_{\rm t}}{r}$
α	a_{t}	$\alpha = \frac{a_{\rm t}}{r}$
	a _c	$a_{\rm c} = \frac{v_{\rm t}^2}{r}$

Table 10.3 Rotational and Translational Quantities: Circular Motion

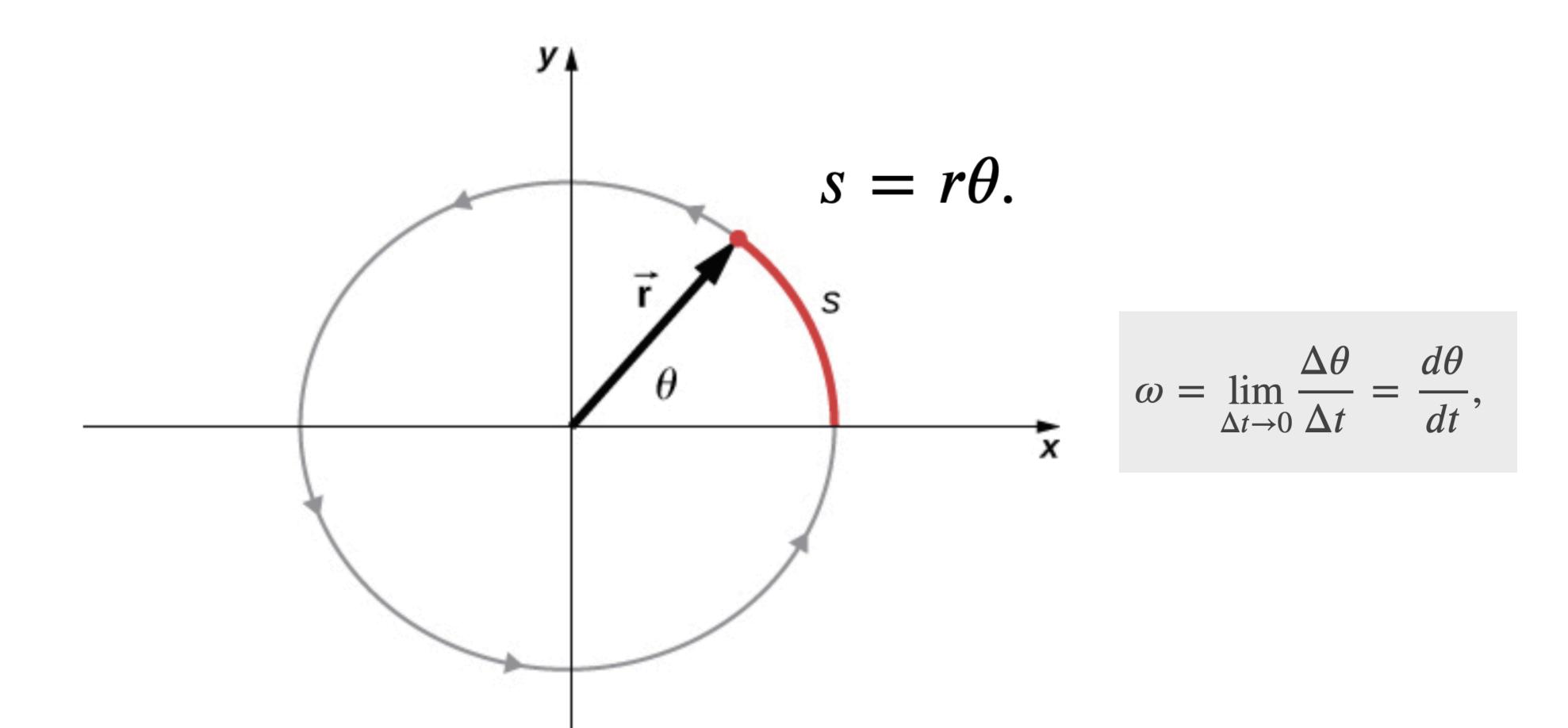
Rotational Quantities

In Figure 10.2, we show a particle moving in a circle. The coordinate system is fixed and serves as a frame of reference to define the particle's position. Its position vector from the origin of the circle to the particle sweeps out the angle θ , which increases in the counterclockwise direction as the particle moves along its circular path. The angle θ is called the angular position of the particle. As the particle moves in its circular path, it also traces an arc length s.



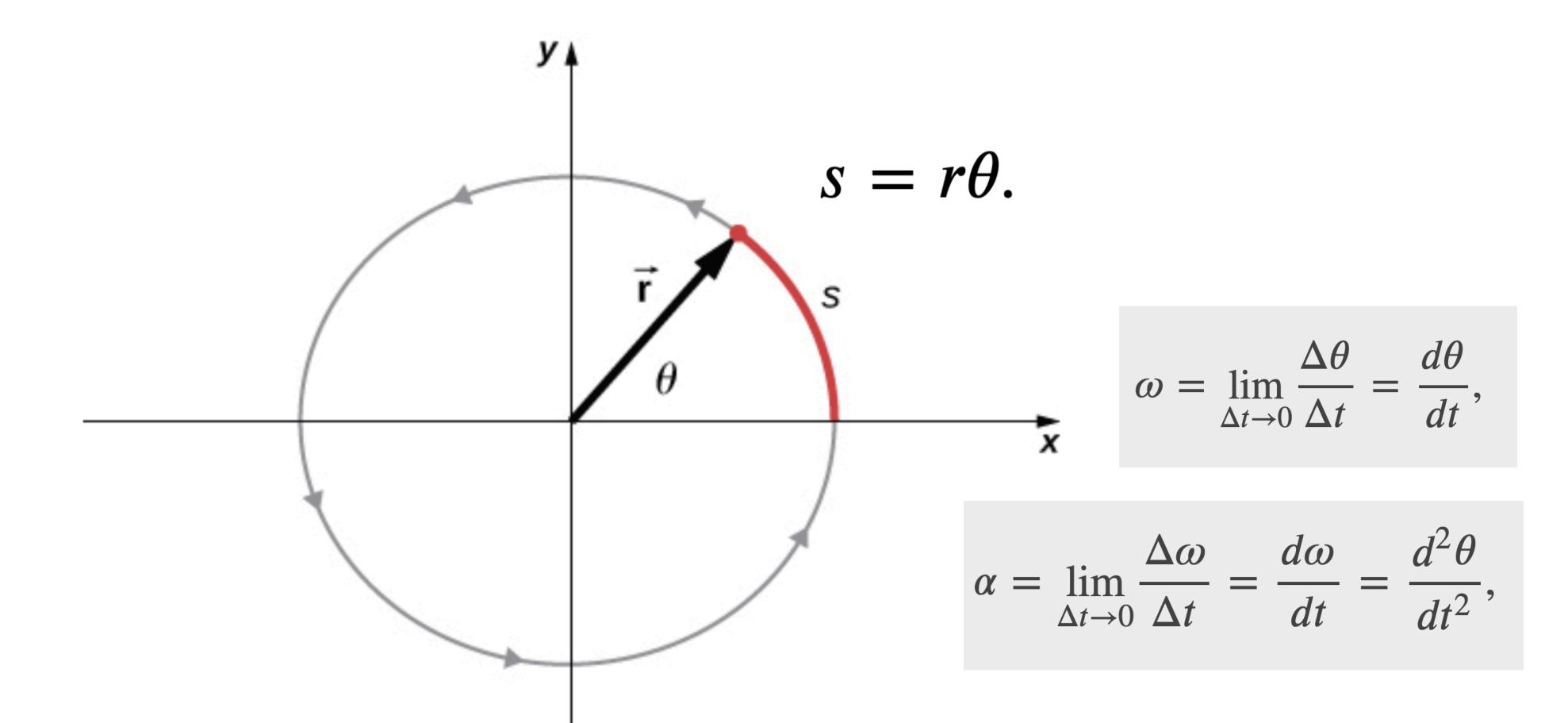
Rotational Motion

In Figure 10.2, we show a particle moving in a circle. The coordinate system is fixed and serves as a frame of reference to define the particle's position. Its position vector from the origin of the circle to the particle sweeps out the angle θ , which increases in the counterclockwise direction as the particle moves along its circular path. The angle θ is called the angular position of the particle. As the particle moves in its circular path, it also traces an arc length s.



Rotational Motion

In Figure 10.2, we show a particle moving in a circle. The coordinate system is fixed and serves as a frame of reference to define the particle's position. Its position vector from the origin of the circle to the particle sweeps out the angle θ , which increases in the counterclockwise direction as the particle moves along its circular path. The angle θ is called the **angular position** of the particle. As the particle moves in its circular path, it also traces an arc length s.



Rotational Motion

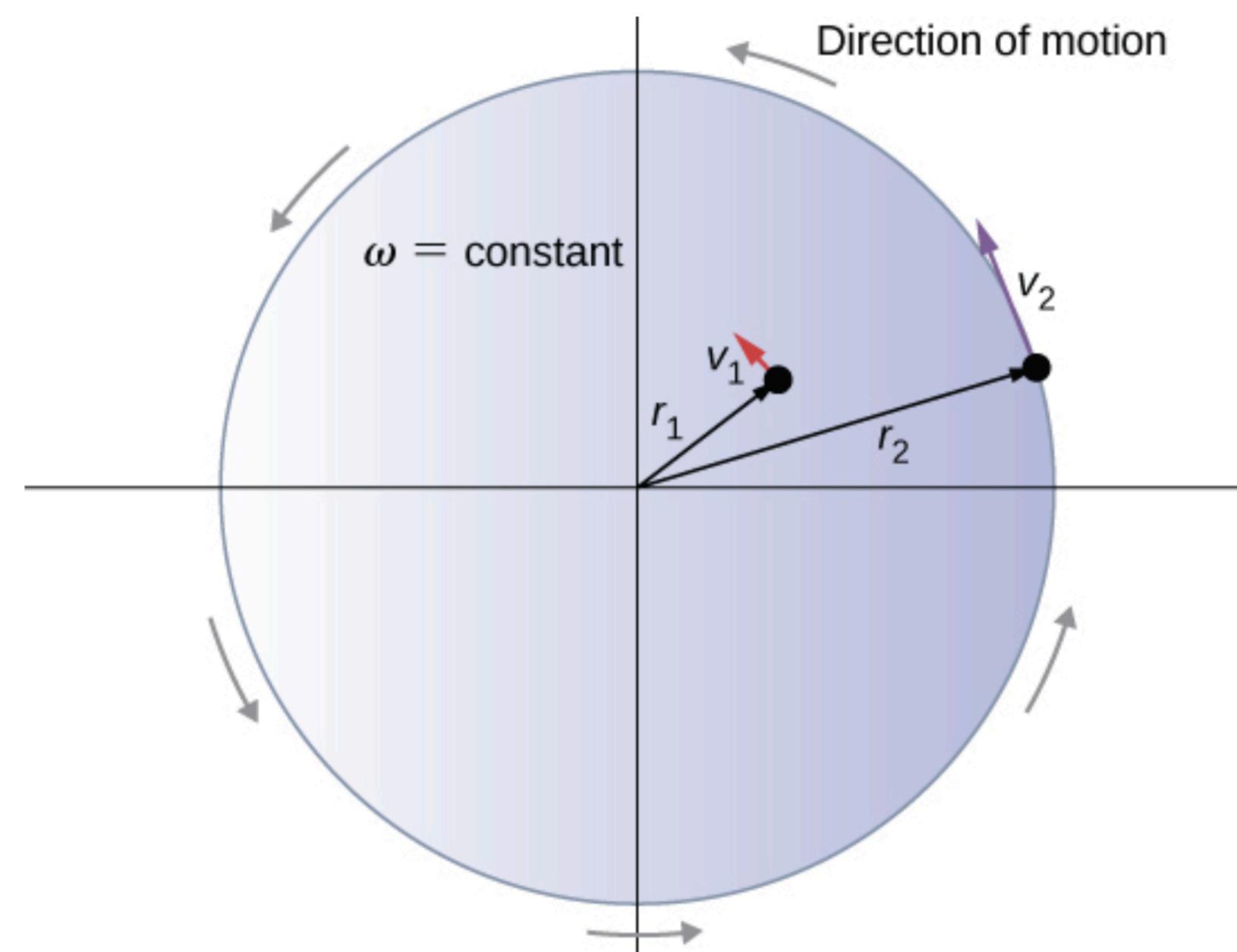


Figure 10.4 Two particles on a rotating disk have different tangential speeds, depending on their distance to the axis of rotation.

Rotating Disk

12

Ladybug Revolution (1.13)	
<u>File H</u> elp	
Intro Rotation	
Reset All	
Show Velocity Vector	
O have	
Acceleration Vector	
Ruler - 100 0 100	
Angle 0.00 degrees	A sea d
-720.00 720.00	200
Angular Velocity 0.00 degrees/s	
-286.48 286.48	
	Pause Step

Link to PHET Simulation: <u>https://phet.colorado.edu/sims/cheerpj/rotation/latest/rotation.html?simulation=rotation</u>

* Rotating Disk

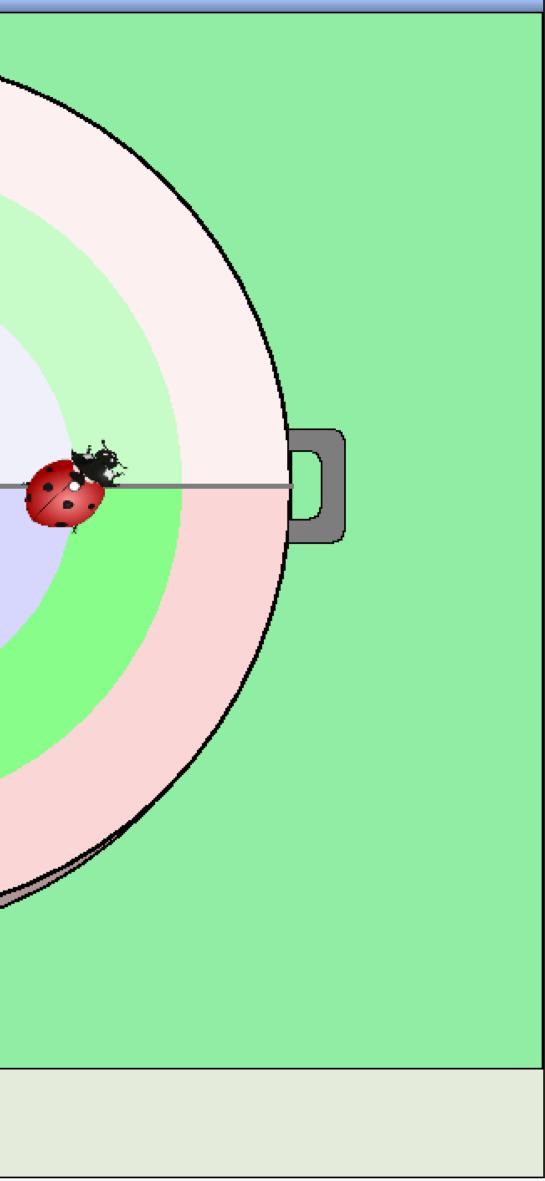


Table 10.2 Rotational and Translational Kinematic Equations

Rotational Analogues

Translational

$$x = x_0 + \overline{v}t$$

$$v_f = v_0 + at$$

$$x_f = x_0 + v_0t + \frac{1}{2}at^2$$

$$v_f^2 = v_0^2 + 2a(\Delta x)$$

14

Rotational

$$\theta_{\rm f} = \theta_0 + \overline{\omega}t$$

 $\omega_{\rm f} = \omega_0 + \alpha t$

$$\theta_{\rm f} = \theta_0 + \omega_0 t + \frac{1}{2} \alpha t^2$$

$$\omega_{\rm f}^2 = \omega_0^2 + 2\alpha(\Delta\theta)$$

 Table 10.2
 Rotational and Translational Kinematic Equations

Rotational Analogues

Translational
$x = x_0 + \overline{v}t$
$v_{\rm f} = v_0 + at$
$x_{\rm f} = x_0 + v_0 t + \frac{1}{2} a t^2$
$v_{\rm f}^2 = v_0^2 + 2a(\Delta x)$

15

Table 10.4 Rotational and Translational Kinetic Energies and Inertia

Rotational Analogues

Translational	
m	
$K = \frac{1}{2}mv^2$	

Rotational $I = \sum m_j r_j^2$ $K = \frac{1}{2}I\omega^2$

Table 10.4 Rotational and Translational Kinetic Energies and Inertia

Rotational Analogues

Translational
m
$K = \frac{1}{2}mv^2$

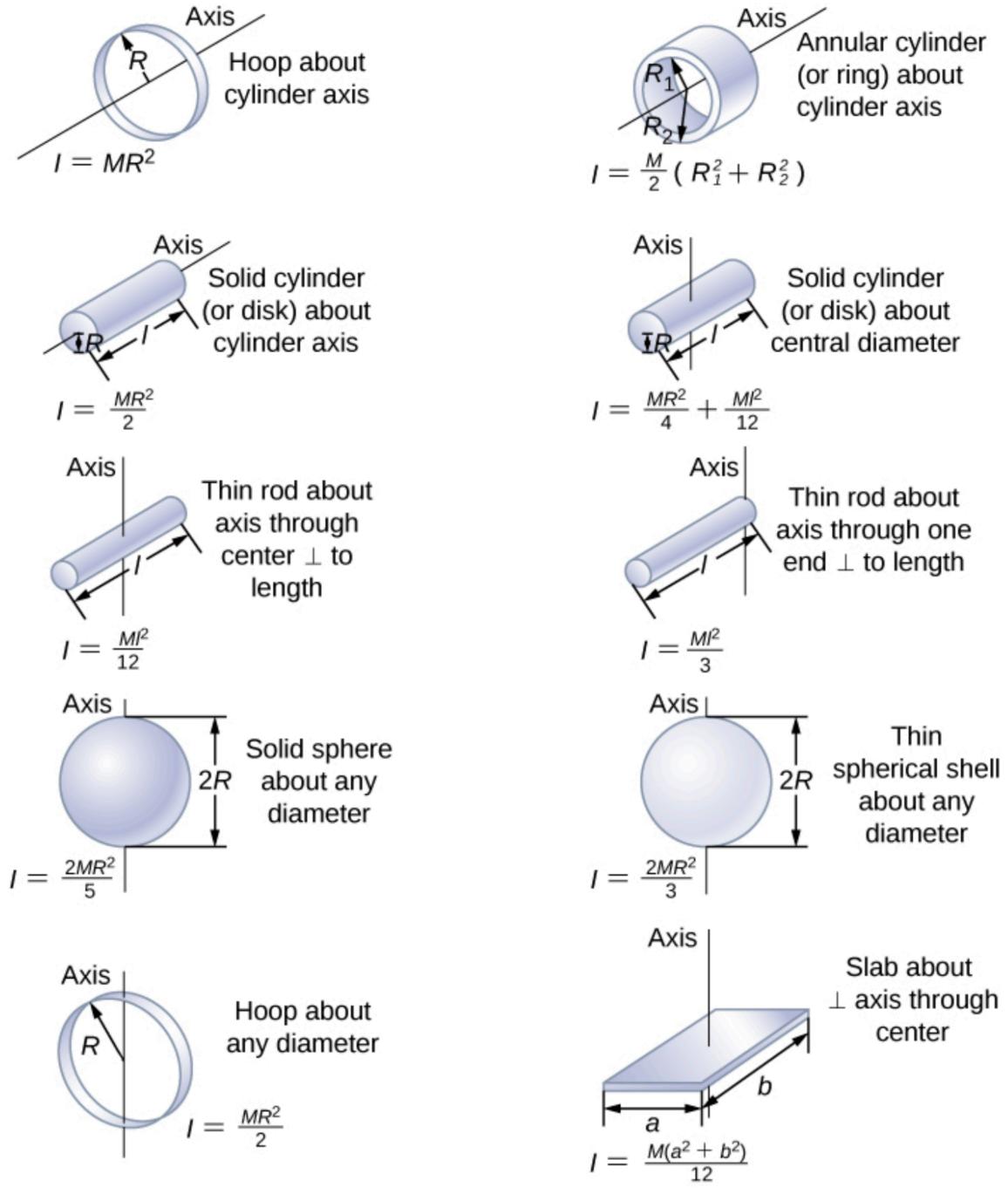


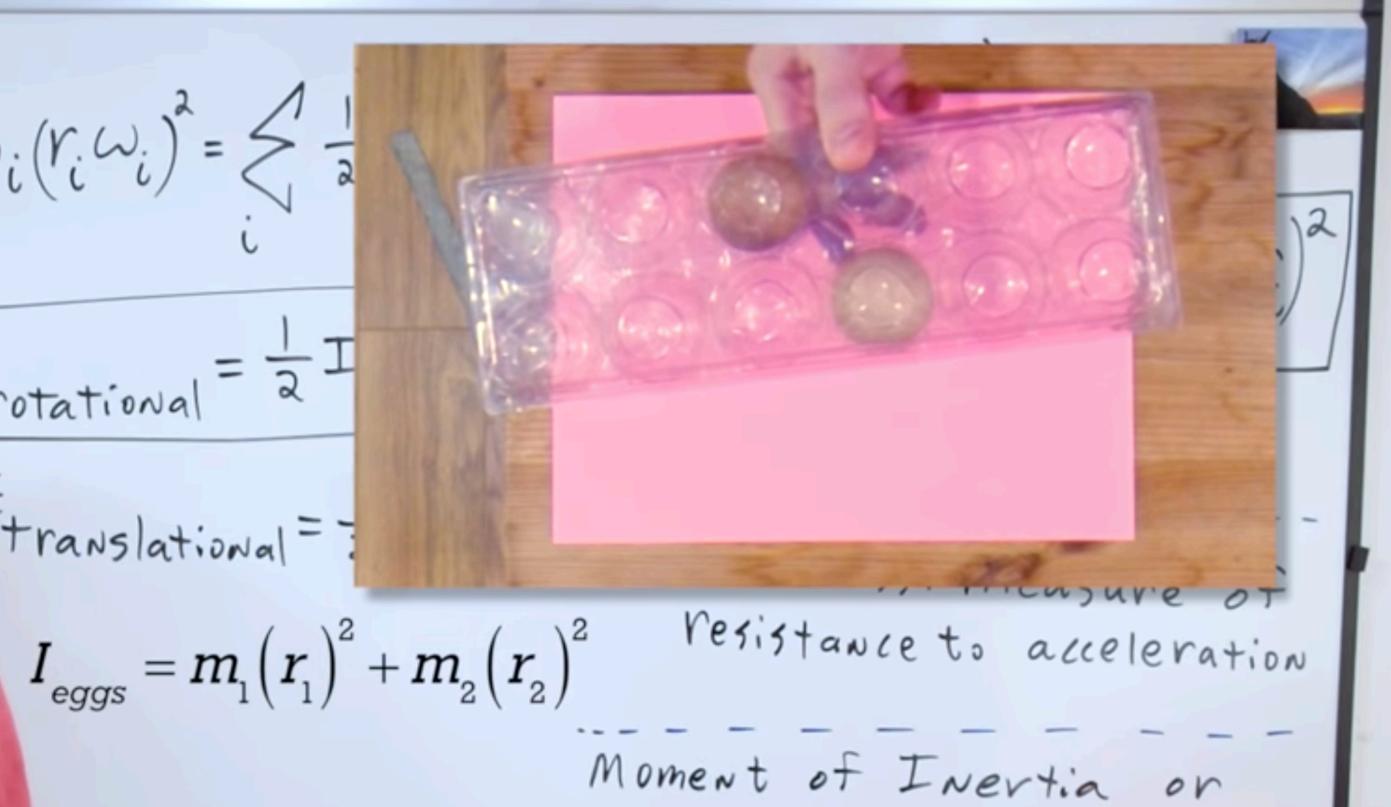
Figure 10.20 Values of rotational inertia for common shapes of objects.

Rotational Inertia

18

 $KE = \frac{1}{2}mv^2 \quad V_t = r\omega$ $\left(V_{i}\right)^{2} = \left\{\frac{1}{2}m_{i}\left(r_{i}\omega_{i}\right)^{2}\right\} = \left\{\frac{1}{2}m_{i}\left(r_{i}\omega_{i}\right)^{2}\right\}$ $KE_{total} = \leq KE_i = \leq$ r=> particle di KErotational = 2 I from Axis of KE + ranslational = ? "Rigid object with means W; 6

Deriving Rotational Kinetic Energy



"Rotational Mass": Measure of resistance to angular acceleration

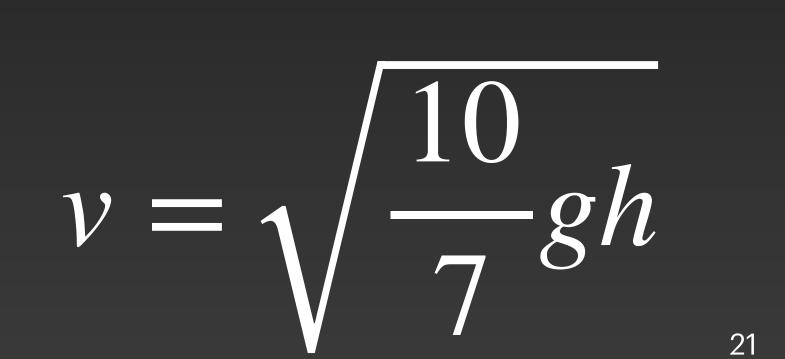
A ball (solid sphere) of mass m and radius R, rolls down a ramp without slipping. What is its velocity at the bottom of the ramp?

Example: Sphere rolling down a ramp

20

A ball (solid sphere) of mass m and radius R, rolls down a ramp without slipping. What is its velocity at the bottom of the ramp?

Example: Sphere rolling down a ramp



Angular position	
Angular velocity	
Tangential speed	
Angular acceleration	
Tangential acceleration	
Average angular velocity	
Angular displacement	
Angular velocity from constant angular acceleration	
Angular velocity from displacement and constant angular acceleration	
Change in angular velocity	
Total acceleration	

Key Equations

$$\theta = \frac{s}{r}$$

$$\omega = \lim_{\Delta t \to 0} \frac{\Delta \theta}{\Delta t} = \frac{d\theta}{dt}$$

$$\upsilon_{t} = r\omega$$

$$\alpha = \lim_{\Delta t \to 0} \frac{\Delta \omega}{\Delta t} = \frac{d\omega}{dt} = \frac{d^{2}\theta}{dt^{2}}$$

$$a_{t} = r\alpha$$

$$\overline{\omega} = \frac{\omega_{0} + \omega_{f}}{2}$$

$$\theta_{f} = \theta_{0} + \overline{\omega}t$$

$$\omega_{f} = \omega_{0} + \alpha t$$

$$\theta_{f} = \theta_{0} + \omega_{0}t + \frac{1}{2}\alpha t^{2}$$

$$\omega_{f}^{2} = \omega_{0}^{2} + 2\alpha(\Delta\theta)$$

$$\vec{a} = \vec{a}_{c} + \vec{a}_{t}$$

Rotational kinetic energy

Moment of inertia

Rotational kinetic energy in terms of the moment of inertia of a rigid body

Moment of inertia of a continuous object

Parallel-axis theorem

Moment of inertia of a compound object

Key Equations

$$K = \frac{1}{2} \left(\sum_{j} m_{j} r_{j}^{2} \right) \omega^{2}$$

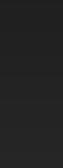
$$I = \sum_{j} m_{j} r_{j}^{2}$$

$$K = \frac{1}{2} I \omega^{2}$$

$$I = \int r^{2} dm$$

$$I_{\text{parallel-axis}} = I_{\text{center of mass}} + m d^{2}$$

$$I_{\text{total}} = \sum_{i} I_{i}$$





Torque vector

Magnitude of torque

Total torque

Newton's second law for rotation

Incremental work done by a torque

Work-energy theorem

Rotational work done by net force

Rotational power

Key Equations

$$\vec{\tau} = \vec{r} \times \vec{F}$$

$$|\vec{\tau}| = r_{\perp}F$$

$$\vec{\tau}_{net} = \sum_{i} |\vec{\tau}_{i}|$$

$$\sum_{i} \tau_{i} = I\alpha$$

$$dW = \left(\sum_{i} \tau_{i}\right) d\theta$$

$$W_{AB} = K_{B} - K_{A}$$

$$W_{AB} = \int_{\theta_{A}}^{\theta_{B}} \left(\sum_{i} \tau_{i}\right) d\theta$$

$$P = \tau\omega$$

See you next class!

license.

Attribution

- This resource was significantly adapted from the <u>Open Stax Instructor</u>
- <u>Slides</u> provided by Rice University. It is released under a CC-BY 4.0

- —— Original resource license ——
- OpenStax ancillary resource is © Rice University under a CC-BY 4.0 International license; it may be reproduced or modified but must be
- attributed to OpenStax, Rice University and any changes must be noted.

