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Class Outli

® Logistics / Announcements
® Test 1 Reflection

® Introduction to Chapter 4
@ Clicker Questions

® Activity: Worked Problem



Logistics/Announce

® Lab this week: Lab 2

® HWA4 due this week on Thursday at 6 PM

® Learning Log 4 due on Saturday at 6 PM

® HW and LL deadlines have a 48 hour grace period

@® Test/Bonus Test: Bonus Test 1 available this week

® Test Window: Friday 6 PM - Sunday 6 PM
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Content Summary from Crash

Vid eOS Course Physics

Videos

Optional Videos

Below are the assigned videos for this week. The videos are collapsible so once you're done with one, you can move

to the next one. In the sidebar on the right, you can use the checklists to keep track of what's done. Additional examples (Optional)

Physics 111 Content Summary from Crash Course Physics ¥ Gheckiit of tems

CrashCourse Physics | - 2D

Q, Search this book... . ;
2D Motion Motion

CrashCourse Physics | -

Unsyllabus Uniform Circular Motion

@ Vectors and 2D Motion: Crash Course Physics #4

ABOUT THIS COURSE Video 1 - Introduction

Course Syllabus (Official) to Projectile Motion

Course Schedule Video 4 - Nerd-A-Pult — An

Introductory Projectile Motion

Accommodations
Problem

How to do well in this course

Video 7 - Understanding
the Range Equation of
Projectile Motion

GETTING STARTED

Before the Term starts

Video 12 - A Projectile Motion
Problem using Unit Vectors

After the first class

In the first week

Video 16 - Introduction to
Relative Motion using a
Quadcopter Drone

Week 1 - Introductions! v

PART 1 - KINEMATICS
Watch on 3 YouTube

Week 2 - Chapter 2 v

Week 3 - Chapter 3 v

Week 4 - Chapter 4 A The video on uniform circular motion mentions forces - this we will cover in Chapter 5.
Readings
Videos Uniform Circular Motion
Homework

Week 2 Classes

@ Uniform Circular Motion: Crash Course Physics #7

Bonus Test 01
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Figure 3.1 A JR Central LO series five-car maglev (magnetic levitation) train undergoing a test run on the Yamanashi Test Track. The maglev train’s motion
can be described using kinematics, the subject of this chapter. (credit: modification of work by “Maryland GovPics”/Flickr)

Chapter Outline

3.1 Position, Displacement, and Average Velocity

3.2 Instantaneous Velocity and Speed

3.3 Average and Instantaneous Acceleration

3.4 Motion with Constant Acceleration

3.5 Free Fall

3.6 Finding Velocity and Displacement from Acceleration

Our universe is full of objects in motion. From the stars, planets, and galaxies; to the motion of people and animals;
down to the microscopic scale of atoms and molecules—everything in our universe is in motion. We can describe
motion using the two disciplines of kinematics and dynamics. We study dynamics, which is concerned with the
causes of motion, in Newton’s Laws of Motion; but, there is much to be learned about motion without referring to
what causes it, and this is the study of kinematics. Kinematics involves describing motion through properties such

My highlights
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(a) Projectile motion (b) Horizontal component: constant velocity

vi X y
V, / V,
v J\v (c) Vertical (d) Total velocity

component: at a point
yi/ 0 X constant Vi

0 acceleration
y < V

Figure 4.12 (a) We analyze two-dimensional projectile motion by breaking it into two independent one-dimensional motions along the vertical and
horizontal axes. (b) The horizontal motion is simple, because a, = 0 and v, is a constant. (c) The velocity in the vertical direction begins to decrease as
the object rises. At its highest point, the vertical velocity is zero. As the object falls toward Earth again, the vertical velocity increases again in magnitude
but points in the opposite direction to the initial vertical velocity. (d) The x and y motions are recombined to give the total velocity at any given point on
the trajectory.




Figure 4.19 The centripetal acceleration
vector points toward the center of the circular
path of motion and is an acceleration in the
radial direction. The velocity vector is also
shown and is tangent to the circle.
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Position vector

Displacement vector

Velocity vector

Velocity in terms of components

Velocity components

Average velocity

Instantaneous acceleration

Instantaneous acceleration, component form

Instantaneous acceleration as second
derivatives of position

V(1) =

At—0 At

r(®) = x(Oi + y(0)j + z(Ok
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o dt
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Time of flight Tiof = 2(00211100)
, _ g 2
Trajectory y = (tanfp)x [2(0000300 )2] X
Range R = v(z)sin 20
g
Centripetal acceleration ac = ”72
Position vector, uniform circular motion ?(t) = ACO0S wt ; + A sin a)tj
Velocity vector, uniform circular motion 3(1‘) = d;gt ) = — Aw sin wti + Aw cos a)tj
Acceleration vector, uniform circular motion 3(;) = d;gt) = —Aw? cos wti — Aw? sin a)tj
| | ]
Tangential acceleration ar = —-
t

, - - -
Total acceleration a=ac+ar



Position vector in frame

S is the position

vector in frame S’ plus the vector from the
origin of S to the origin of .S’

Relative velocity equation connecting two
reference frames

Relative velocity equation connecting more
than two reference frames

Relative acceleration equation

- - -
rps =Ipgy +Tgg

— -
= Vpg' + Vg g

- - -
Vpa +VaB + VpC

— -
= apgr +ag' g
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—  — - - -
Consider vectors A, B, and their resultant R = A + B. How can you

express its magnitude in terms of A, A,, B,, and B,?

N
) R' — (A, + B)) + (4, + B,)

R
b) R| — (A, + By) — (4, + B,)

o 2 2
0 R' — (Ay + B)? + (4, + B))

d) lﬁ' = 1/(Ax + By)* + (A, + B,)’




—  — - - -
Consider vectors A, B, and their resultant R = A + B. How can you

express its magnitude in terms of A, A,, B,, and B,?

N
) R' — (A, + B)) + (4, + B,)

R
b) |R| — (A, + By) — (4, + B,)

o 2 2
0 R' — (Ay + B)? + (4, + B))

v d) lﬁ' = 1/(Ax + By)* + (A, + B,)’

Detailed solution: R' = J(A. + B.)* + (A, + By)2




> > —
Consider vectors A, B, and their resultant R . How can you express its

direction as a counterclockwise angle from positive x in terms of A, A,
B.,and B,?

a) 6 = sin~! (Ay+B )

A,+B,

A,+B,

A+ B,
— 1 x+Bx
c) 6 =tan™ ( Ay+By)

1 Ay+B
d 6 =tan™ ywn Bx

—1

b) 6 = cos




> > —
Consider vectors A, B, and their resultant R . How can you express its

direction as a counterclockwise angle from positive x in terms of A, A,
B.,and B,?

a) 6 = sin~! (Ay+B )

A,+B,

A,+B,

A+ B,
— 1 x+Bx
c) 6 =tan™ ( Ay+By)

A+
v d) 0 =tan! Ay+B

—1

b) 6 = cos

Detailed solution:




When will the x-component of a vector with angle 6 be greater than its y-component?

a) 0°< 0 <45
The value of a vector’s x-component is more than the value of its y-component when the angle is between

0° and 45°.

b) 6 =45°

The value of x and y-component of the vector will be same at this angle.

c) 45°< 0 < 60°

Try to recall the variation of values of trigonometric identities with the increasing value of the angle.

d 60°< 6 < 90°

Resolve the vector into its components and evaluate the expression for given values of the angle. The x-
component will not be greater than the y-component.




When will the x-component of a vector with angle 6 be greater than its y-component?

v a) 0°< 0 <45
The value of a vector’s x-component is more than the value of its y-component when the angle is between

0° and 45°.
b) 0 = 45°

The value of x and y-component of the vector will be same at this angle.

c) 45°< 0 < 60°

Try to recall the variation of values of trigonometric identities with the increasing value of the angle.

d 60°< 6 < 90°

Resolve the vector into its components and evaluate the expression for given values of the angle. The x-
component will not be greater than the y-component.

Detailed solution: SinceA, = AcosOandA, = Asin0, A, > A,whencosO > sinf. Thisiswhen0"< 0 < 45




Activity:




EXAMPLE 4.6

A Skier

Figure 4.10 shows a skier moving with an acceleration of 2.1 m/s> down a slope of 15° at t = 0. With the
origin of the coordinate system at the front of the lodge, her initial position and velocity are

r(0) = (75.0i — 50.0j) m

and

v(0) = (4.1i — 1.1j) m/s.

(@) What are the x- and y-components of the skier’s position and velocity as functions of time? (b) What
are her position and velocity att = 10.0 s?
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Solution (b) Now that we have the equations of motion for x and y as functions of time, we can evaluate them at t =

10.0 s:
(@) The origin of the coordinate system is at the top of the hill with y-axis vertically upward and the x-axis

horizontal. By looking at the trajectory of the skier, the x-component of the acceleration is positive and the

1
x(10.0s) = 75.0m + (4.1 m/s*)(10.0 s) + —(2.0 m/s*)(10.0s)*> = 216.0 m
y-component is negative. Since the angle is 15° down the slope, we find 2

a, = (2.1 m/s*) cos(15°) = 2.0 m/s’ 0,(10.08) = 4.1 m/s + (2.0 m/s?)(10.0's) = 24.1m/s

AN o 2
ay, = (=2.1m/s%) sin 15° = —0.54 m/s". »(10.0's) = =50.0 m + (1.1 m/s)(10.0 s) + %(—0.54 m/s2)(10.0 s)*> = —88.0 m

Inserting the initial position and velocity into Equation 4.12 and Equation 4.13 for x, we have

0,(10.0s) = —1.1 m/s + (—0.54 m/s>)(10.0's) = —6.5 m/s.

1
x(1) = 75.0 m + (4.1 m/s)t + 5(2.0 m/s® )t

The position and velocity at t = 10.0 s are, finally,

£(10.0s) = (216.0i — 88.0j
v,(t) =4.1m/s + (2.0 m/sz)t. r( s) = ( i j) m

e O RENE v(10.0'5) = (24.1i — 6.5j)m/s.

J(E) = —=50.0m + (1.1 m/s)t + 1 (—0.54 m/sz)tz The magnitude of the velocity of the skier at 10.0 s is 25 m/s, which is 60 mi/h.
— e o 5 B

Significance

It is useful to know that, given the initial conditions of position, velocity, and acceleration of an object, we
v,() = —1.1 m/s + (—0.54 m/s>). . SO, el . POST® g ’
can find the position, velocity, and acceleration at any later time.
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