You can draw here

Physics 111 - Class 2A Logistics & Diagnostics **September 10, 2021**

Do not draw in/on this box!

You can draw here

You can draw here

Logistics/Announcements

• Lab this week:

• HW due this week on Thursday at 6 PM

Test/Bonus Test: Window is Friday 6PM - Sunday 6PM

Learning Log due on Saturday at 6 PM

O HW and LL deadlines have a 48 hour grace period

• +				
F	⁻ iras Moosvi <mark>stu</mark>			
ework 1				
Assessmen overview	it			
points: 0/	10			
e: 🗧	0%			
tion				
:	1			
ry:				
ded prints: 0/1				
an error in this stion ⊡				
evious ques	tion			
Next questio	n			

 "Report an issue" only works one-way, we cannot respond to students

Many of you are asking questions about the concepts, which is better done on ED Discussion...

Thanks for your patience and your engagement/ feedback!

Introduction to Chapters 1 and 2

Clicker Questions

Problem Solving Template

Activity

\bigcirc Debrief

ntroduction

÷

Below are the assigned videos for this week. The videos are collapsible so once you're done with one, you can move to the next one. In the sidebar on the right, you can use the checklists to keep track of what's done.

 \mathbf{v}

^

Physics 111

Q Search this book...

Unsyllabus

ABOUT THIS COURSE

Course Syllabus (Official) **Course Schedule** Accommodations How to do well in this course

GETTING STARTED

Before the Term starts

After the first class

In the first week

Week 1 - Introductions!

PART 1 - KINEMATICS

Week 2 - Chapter 2

Readings

Videos

Homework

Lecture

Test

Lab

Learning Logs

COURSE FEEDBACK

Anonymous Feedback Form

Powered by Jupyter Book

I≡ Contents

Required Videos

Checklist of items		
Video 1		
_Video 2		
_Video 3		
_Video 3		
_Video 3		

Q: How many of the following items are $VECTORS(\mathbf{V})$ and $Scalars(\mathbf{X})$?

- Distance travelled
- Density
- The position in 3 dimensions
- •The average velocity
- Drag

The position in a 1 dimensional system

Problem Solving Template

PHYSICAL REVIEW PHYSICS EDUCATION RESEARCH 16, 010123 (2020)

Template for teaching and assessment of problem solving in introductory physics

E. W. Burkholder^[0],^{1,*} J. K. Miles,² T. J. Layden,² K. D. Wang,³ A. V. Fritz^[0],⁴ and C. E. Wieman^[1],³

Reference: Template for teaching and assessment of problem solving in introductory physics

1. Framing

Reference: <u>Template for teaching and assessment of problem solving in introductory physics</u>

Visual Representation

Relevant Concepts

Similar Problems

Assumptions and Simplifications

Information Needed

1. Framing

2. Planning

Reference: <u>Template for teaching and assessment of problem solving in introductory physics</u>

Visual Representation

Relevant Concepts

Similar Problems

Assumptions and Simplifications

Information Needed

Solution Plan

Rough Estimate

Reference: <u>Template for teaching and assessment of problem solving in introductory physics</u>

Visual Representation

Relevant Concepts

Similar Problems

Assumptions and Simplifications

Information Needed

Rough Estimate

Carry-out Plan for solving - Work in algebra/symbols until the BITTER end Plug in numbers at the LAST step

12

Reference: Template for teaching and assessment of problem solving in introductory physics

Visual Representation

Relevant Concepts

Similar Problems

Assumptions and Simplifications

Information Needed

Solution Plan

Rough Estimate

Carry-out Plan for solving - Work in algebra/symbols until the BITTER end · Plug in numbers at the LAST step

Compare to Estimate

Units Check

Getting (UnStuck)

Reference: Template for teaching and assessment of problem solving in introductory physics

Visual Representation

Relevant Concepts

Similar Problems

Assumptions and Simplifications

Information Needed

Solution Plan

Rough Estimate

Carry-out Plan for solving - Work in algebra/symbols until the BITTER end Plug in numbers at the LAST step

Compare to Estimate

Units Check

Getting (UnStuck)

Length in Meters (m)	Masses in Kilograms (kg)	Time in Seconds (s)
10 m = diameter of proton	10^{-30} kg = mass of electron	10 ⁻²² s = mean lifetime of very unstable nucleus
10^{-14} m = diameter of large nucleus	10 kg = mass of proton	10 s = time for single floating- operation in a supercomputer
10^{-10} m = diameter of hydrogen atom	10 kg = mass of bacterium	10^{-15} s = time for one oscillation visible light
10 m = diameter of typical virus	10 kg = mass of mosquito	10^{-13} s = time for one vibration o atom in a solid
10^{-2} m = pinky fingernail width	10^{-2} kg = mass of hummingbird	10 s = duration of a nerve impu
$10^{0} \text{ m} = \text{height of } 4 \text{ year old child}$	10 ⁰ kg = mass of liter of water	$10^{0} \text{ s} = \text{time for}$ one heartbeat R P Q STQ S
10 m = length of football field	10 ² kg = mass of person	10 s = one day
10 m = diameter of Earth	10 kg = mass of atmosphere	10 s = one year
10 m = diameter of solar system	10^{22} kg = mass of Moon	10 s = human lifetime
10 ¹⁶ m = distance light travels in a year (one light-year)	10 kg = mass of Earth	10 s = recorded human history
10 m = Milky Way diameter	10 kg = mass of Sun	10^{17} s = age of Earth
$10^{26} \text{ m} = \text{distance to edge of}$ observable universe	10 ⁵³ kg = upper limit on mass of known universe	10 s = age of the universe

Figure 1.4 This table shows the orders of magnitude of length, mass, and time.

ating-point

ation of

tion of an

impulse

Activity

Length in Meters (m)	Masses in Kilograms (kg)	Time in Seconds (s)
10^{-15} m = diameter of proton	10^{-30} kg = mass of electron	10 ⁻²² s = mean lifetime of ve unstable nucleus
10^{-14} m = diameter of large nucleus	10^{-27} kg = mass of proton	10^{-17} s = time for single floa operation in a supercompute
10^{-10} m = diameter of hydrogen atom	10^{-15} kg = mass of bacterium	10^{-15} s = time for one oscillation visible light
10^{-7} m = diameter of typical virus	10 ⁻⁵ kg = mass of mosquito	10^{-13} s = time for one vibrati atom in a solid
10^{-2} m = pinky fingernail width	10^{-2} kg = mass of hummingbird	10^{-3} s = duration of a nerve
10 ⁰ m = height of 4 year old child	10 ⁰ kg = mass of liter of water	$10^{0} \text{ s} = \text{time for}$ one heartbeat
$10^2 m = length of football field$	10 ² kg = mass of person	$10^5 s = one day$
$10^7 \text{ m} = \text{diameter of Earth}$	10^{19} kg = mass of atmosphere	$10^7 s = one year$
10^{13} m = diameter of solar system	10^{22} kg = mass of Moon	10 ⁹ s = human lifetime
10 ¹⁶ m = distance light travels in a year (one light-year)	10^{25} kg = mass of Earth	10^{11} s = recorded human his
10 ²¹ m = Milky Way diameter	10^{30} kg = mass of Sun	10^{17} s = age of Earth
10 ²⁶ m = distance to edge of observable universe	10 ⁵³ kg = upper limit on mass of known universe	10^{18} s = age of the universe

Figure 1.4 This table shows the orders of magnitude of length, mass, and time.

ery

ating-point

ation of

tion of an

impulse

story

Debrief

16

See you next class!

