
CPSC 455
Development and Release Processes in Mature Organizations
By
Dorothy Ordogh

Development and release
processes in mature

organizations

Intro

How do mature organizations structure, manage,
build, deploy, and host code?

&&

Why is it important?

Structure

Code-base Structure

Repo

Product 1

Product 2

Product 3

Product 4

Product … n

MonorepoMany repos

Product 1 repo

Product 2 repo

Product 3 repo

Product 4 repo

Product .. repo
Product .. repo

Product .. repo
Product .. repo

Product n repo

Code-base structure

 A

 B C

 D

 A

 B C

D-1.0 D-1.1

Diamond dependencies

Code-base structure

Many repos
Pros:
+ smaller repos
+ easier to maintain
+ tools often work better with smaller repos

Cons:
- limited access to other repos
- dependency hell
- coordination overhead

Monorepo
Pros:
+ source dependencies
+ access to everything
+ onus on the person making the change not
to break everyone

Cons:
- hard to maintain
- need specialized tools because of the size
of the repo, often slow

Manage
Version control systems

Manage
Which system is used depends
on a number of factors. What
do you think these factors are?

What is done before code is
merged?

branch_1

main

branch_2

branch_3

Build

Build

● Resolves 3rd party
dependencies

● Code generation
● Compiles/packages code
● Runs tests
● Executes the program

● Resolves 3rd party
dependencies

● Code generation
● Compiles/packages code
● Runs tests
● Executes the program

● Resolves 3rd party
dependencies

● Code generation
● Compiles/packages code
● Runs tests
● Executes the program

● Resolves 3rd party
dependencies

● Code generation
● Compiles/packages code
● Runs tests
● Executes the program

● Resolves 3rd party
dependencies

● Code generation
● Compiles/packages code
● Runs tests
● Executes the program

Resolves 3rd
party deps

Code
generation

● Compiles/packages
● Runs tests
● Executes the program

● Compiles/packages
● Runs tests
● Executes the program

● Compiles/packages
● Runs tests
● Executes the program

● Compiles/packages
● Runs tests
● Executes the program

● Compiles/packages
● Runs tests
● Executes the program

Language specific vs polyglot build tools

eg: Bazel

Deploy & Host

Deploy

Continuous Integration (CI)

Automatic testing of changes before integrating
changes into the main branch.

● Building
● Running and passing integration and unit

tests
● Optional: code coverage, quality, syntax, etc.

Goal: main branch is a “clean state”

Continuous Delivery (CD)

Automated process to deploy software with
some human intervention.

● Happens after CI
● Deploys to testing and staging

environments

Goal: prove code is deployable

Deploy

Continuous Deployment

Totally automated deployment of changes.

● Must complete CI and CD first

Goal: automatically deploys changes so they are
consumable by users

Source: Atlassian

https://www.atlassian.com/continuous-delivery/principles/continuous-integration-vs-delivery-vs-deployment

Deploy

Examples of GitHub Actions

Small sample repo: https://github.com/dotordogh/ubc-cpsc-455/actions

Twitter Util: https://github.com/twitter/util/actions

https://github.com/dotordogh/ubc-cpsc-455/actions
https://github.com/twitter/util/actions

Deploy
Shipping with zero
downtime ensures your
product is always
available.

What are some strategies
that you might have heard
of?

Deploy
Shipping with zero
downtime ensures your
product is always
available.

Blue/Green deploys
● Two sets of identical environments with the current version

and the new version. Traffic is routed from the current to the
new version

● Quick, and easy to rollback versions if new version has a bug,
but very expensive (especially with very frequent deploys)

Rolling deploys
● One set of nodes and the new version is deployed gradually

across the set
● Cost effective, more than two versions can be deployed at the

same time, but the process can be lengthy and rollback can be
difficult

Canary deploys
● One set of nodes and changes deployed to a small subset for

testing. Many versions can be deployed at the same time

A/B deploys
● Very similar to canaries (used for testing) but only two

versions are running at the same time

Host
Where software is
deployed so that it is
consumable.

Can you name some
hosting options mature
organizations would use?

Host

Cloud

● Third party (AWS, GCS, etc)
● Elasticity and auto scaling depending on

traffic is usually included
● Cheaper for smaller systems because you

don’t need to invest in the capital of
infrastructure (building, servers, wiring,
electricity, etc)

● May have to share resources with other
companies/services

Data center

● When cloud doesn’t cut it anymore (disk
sharing, not enough capacity, etc)

● Have more control over your own data
centers and servers

● Need lots of capital for infrastructure
● Lots of infra needs to be built for this to be

effective

Further reading

● Release engineering - Google SRE
book

● Diamond dependency problem
● Visual guide to version control
● Illustrated guide to distributed VCS
● Difference between a compiled and

interpreted language

● What is an executable?
● Difference between continuous

integration, delivery, and
deployment

● Deployment strategies with zero
downtime

● Hosting

https://sre.google/sre-book/release-engineering/
https://sre.google/sre-book/release-engineering/
https://jlbp.dev/what-is-a-diamond-dependency-conflict#:~:text=A%20diamond%20dependency%20conflict%20is,features%20that%20the%20consumers%20expect.
https://betterexplained.com/articles/a-visual-guide-to-version-control/
https://betterexplained.com/articles/intro-to-distributed-version-control-illustrated/
https://www.geeksforgeeks.org/difference-between-compiled-and-interpreted-language/
https://www.geeksforgeeks.org/difference-between-compiled-and-interpreted-language/
https://www.techtarget.com/whatis/definition/executable-file-exe-file
https://www.atlassian.com/continuous-delivery/principles/continuous-integration-vs-delivery-vs-deployment
https://www.atlassian.com/continuous-delivery/principles/continuous-integration-vs-delivery-vs-deployment
https://www.atlassian.com/continuous-delivery/principles/continuous-integration-vs-delivery-vs-deployment
https://2cloud.io/blog/zero-downtime-during-deployment
https://2cloud.io/blog/zero-downtime-during-deployment
https://en.wikipedia.org/wiki/Internet_hosting_service

