
Stephanie Mah

Git Overview with

Suggested Workflow

So you still don’t understand git…

First off, why do you personally need it?
Imagine you got some code working but maybe it wasn’t the best and you want to
rewrite it. Rather than saving and duplicating files in the event you want to revert to your
previous implementation, git allows you to revert to previous commits - this is one benefit
of version control (it’s like less cool time travelling)

And why does my team need it?
It allows each person to work independently of each other on a whole and up to date
version of your code rather than working on duplicate copies and having to manually
merge them together.

So what is a good strategy for working with git?

Here are a few tips:
Master branch should always be functional, not broken - this ensures that no matter
what happens with your branch, you can always start fresh with something that
works
As above, only merge a branch into master when you know it works
Sharing a branch with another team member is ill-advised - it can happen, but
wherever possible, either use separate branches or branch off of their branch
Always make a pull request (PR) to merge your branch into master (or any other
branch really), DO NOT just merge straight in with a git command - PRs will expose
potential merge conflicts and will allow yourself and others to see the difference
between the two branches so that you may resolve any issues before you merge.

With that said, how do you actually do the things???

git clone project_URL - use this to get a local copy of a project for the first time -
you’ll get a local copy of master on your machine
git checkout -b branch_name - use this to create and navigate to a new branch off of
whatever branch you’re on
git checkout branch_name - use this to navigate to an existing branch
git pull - use this to pull any changes in the remote version of your branch to your
local version - switching branches does not always do this automatically, always do this

after you’ve switched branches especially when you switch to master
git pull origin master - use this to pull changes in the master branch to your local
branch - may result in merge conflicts! But your IDE should point any merge conflicts out
to you and ask how you want to resolve them
git add . - use this to add all changed files to your upcoming commit
git commit -m "message" - use this to bundle a set of changes together before you
push - should be used after git add .
git push -u origin branch_name - use this the first time you commit changes on a
new branch - after creating a new branch, it won’t exist remotely until you run this
command
git push - use this to push committed changes to the remote version of your
branch - will error if you didn’t do git push -u origin branch_name yet on a new branch

Suggested Project Workflow

As we typically require you to submit a branch for code review, I would suggest your
workflow be as follows:
1. git checkout master if you’re not already on master
2. git pull to get the most recent version of master on your local machine
3. git checkout -b code_review_branch to create a new branch off of master -> Only

one team member should do this! Treat this branch as your master!
4. git checkout code_review_branch to navigate to the new branch (If you were the

member who created the branch, you are probably already on this branch)
5. git checkout -b stephanies_feature to create your own branch off of

code_review_branch -> Each team member should do this!

6. Make some changes to the code
7. git add . git commit -m "new sweet feature added" git push -u origin

stephanies_feature
8. If your feature isn’t done, make some more changes and then git add . git commit

-m "fixed mistake in last commit" git push
9. If your feature is done, make a PR! Go to your github repo and click the “New pull

request” button. Add your teammates so they can review your changes and make
sure you’re merging stephanies_feature into code_review branch .

10. Fix merge conflicts if there are any. You can pre-empt this step if you run git pull
origin code_review_branch before your PR and fix merge conflicts in your IDE.

11. Wait for approval (should talk with your team on how many approvals is enough. One
person? Everyone?)

12. If there are changes to be made, any new commits to your branch will automatically
be added to your PR.

13. If approved, merge your PR!
14. If you’re still working on code_review_branch, git checkout code_review_branch git

pull and start from step 3!
15. If you’re done with code_review_branch, one team member should make a PR to

merge code_review_branch into master . Once it’s merged, start again from step 1!

For anything else such as git status , git diff , git revert ask a #question or google
it, there are lots of resources out there on how to use git. :)
Happy coding and may the merges be in your favour!

