
DATA 301

Python II

Dr. Firas Moosvi
University of British Columbia Okanagan

firas.moosvi@ubc.ca

3

Python Math Expressions
 Math expressions in Python:

Operation Syntax Example

Add + 5 + 3
Subtract - 10 – 2
Multiply * 5 * 3
Divide / 9 / 4

Modulus % 9 % 4
(answer is 1)

Exponent ** 5 ** 2
(answer is 25)

4
Expressions - Operator Precedence
 Each operator has its own priority similar to their priority in regular
math expressions:
• 1) Any expression in parentheses is evaluated first starting with the inner most

nesting of parentheses.
• 2) Exponents
• 3) Multiplication and division (*, /, %)
• 4) Addition and subtraction (+,-)

5

Python Expressions Question
 Question: What is the value of this expression:

 8 ** 2 + 12 / 4 * (3 – 1) % 5

 A) 69 B) 65 C) 36 D) 16 E) 0

6
Try it: Python Variables and Expressions
 Question 1: Write a program that prints the result of 35 + 5 * 10.

 Question 2: Write a program that uses at least 3 operators to end up
with the value 99.

 Question 3: Write a program that has a variable called name with the
value of your name and a variable called age storing your age. Print
out your name and age using these variables.

7

Strings
 Strings are sequences of characters that are surrounded by either
single or double quotes.
• Use \ to escape ' E.g. There\'s
• Can use triple double quotes """ for a string that spans multiple lines.

 Example:
name = "Joe Jones"

storeName = 'Joe\'s Store'
print("""String that is really long
with multiple lines
 and spaces is perfectly fine""")

8

Python String Indexing
 Individual characters of a string can be accessed using square brackets
([]) with the first character at index 0.

 Example:
str = "Hello"
print(str[1]) # e
print("ABCD"[0]) # A
print(str[-1]) # o
Negative values start at end and go backward

9

Rules for Strings in Python
 Must be surrounded by single or double quotes.
 Can contain most characters except enter, backspace, tab, and backslash.
• These special characters must be escaped by using an initial "\".
• e.g. \n – new line, \' – single quote, \\ - backslash, \" – double quote
• A string in raw mode (r before quote) will ignore backslash escape. May be useful

if data contains escapes. Example: st = r"slash\there\"
 Double quoted strings can contain single quoted strings and vice versa.
 Any number of characters is allowed.
 The minimum number of characters is zero "", which is called the empty
string.

 String literals (values) have the quotation marks removed when displayed.

10

Python Strings Question
 Question: How many of the following are valid Python strings?

 1) ""
 2) ''
 3) "a"
 4) " "
 5) """
 6) "Joe\' Smith\""

 A) 1 B) 2 C) 3 D) 4 E) 5

11

Python String Functions

Operation Syntax Example Output

Length len() len(st) 5

Upper case upper() st.upper() HELLO

Lower case lower() st.lower() hello

Convert to a string str() str(9) "9"

Concatenation + st1 + st2 HelloGoodbye

Substring [] st[0:3]
st[1:]

Hel
ello

String to int int() int("99") 99

st = "Hello"
st2 = "Goodbye"

12

String Operators: Concatenation
 The concatenation operator is used to combine two strings into a
single string. The notation is a plus sign '+'.

 Example:
st1 = "Hello"
st2 = "World!"
st3 = st1 + st2 # HelloWorld!
print(st1+st1)
num = 5
print(st1+str(num)) # Hello5
Must convert number to string before
concatenation

13

String Concatenation Question
 Question: What is the output of this code?

 A) Error

 B) Hello5World!
 C) Hello5 World!
 D) Hello 5 World!

st1 = "Hello"
st2 = "World!"
num = 5
print(st1 + str(num) + " " + st2)

14

Substring
 The substring function will return a range of characters from a string.
 Syntax:

 Examples:

st = "Fantastic"
print(st[1]) # a
print(st[0:6]) # Fantas
print(st[4:]) # astic
print(st[:5]) # Fanta
print(st[-6:-2]) # tast

st[start:end] # start is included, end is not
 # first character is index 0

15

Substring Question
 Question: What is the output of this code?

 A) ABCDCDEFGABCD

 B) ABCDEFGABC
 C) ACDDEFGABCD

 D) BCDDEFGABCD
 E) BCDECDEFGABC

st = "ABCDEFG"
print(st[1] + st[2:4] + st[3:] + st[:4])

16

Split
 The split function will divide a string based on a separator.
 Examples:
st = "Awesome coding! Very good!"
print(st.split())
['Awesome', 'coding!', 'Very', 'good!']
print(st.split("!"))
['Awesome coding', ' Very good', '']
st = 'data,csv,100,50,,25,"use split",99'
print(st.split(","))
['data', 'csv', '100', '50', '', '25',
'"use split"', '99']

17
Try it: Python String Variables and Functions
 Question 1: Write a Python program that prints out your name and age
stored in variables like this:

 Question 2: Write a Python program that prints out the first name and
last name of Steve Smith like below. You must use substring.
• Bonus challenge: Use find() function so that it would work with any name.

Name: Joe
Age: 25

First Name: Steve
Last Name: Smith

18

Print Formatting
 The print method can accept parameters for formatting.

 This is one of the most obvious changes between Python 2:

 and Python 3:

print "Hello"

print("Hello")

print("Hi", "Amy", ", your age is", 21)
print("Hi {}, your age is {}".format("Amy",21))

19

Python Date and Time
 Python supports date and time data types and functions.
 First, import the datetime module:
 from datetime import datetime
 Functions:
now = datetime.now()
print(now)
current_year = now.year
current_month = now.month
current_day = now.day
print("{}-{}-{} {}:{}:{}".format(now.year, now.month,
now.day, now.hour, now.minute, now.second))

20

Python Clock
 Python time() function returns the current time in seconds:
 import time
 startTime = time.time()
 print("Start time:", startTime)
 print("How long will this take?")
 endTime = time.time()
 print("End time:", endTime)
 print("Time elapsed:", endTime-startTime)

21

Python Input
 To read from the keyboard (standard input), use the method input:

• Note in Python 2 the method is called raw_input().

name = input("What's your name?")
print(name)
age = input("What's your age?")
print(age)

Prompt for value
from user

print out value received

22
Try it: Python Input, Output, and Dates
 Question 1: Write a program that reads a name and prints out the
name, the length of the name, the first five characters of the name.

 Question 2: Print out the current date in YYYY/MM/DD format.

23

Comparisons
 A comparison operator compares two values. Examples:
• 5 < 10
• N > 5 # N is a variable. Answer depends on what is N.

 Comparison operators in Python:
• > - Greater than
• >= - Greater than or equal
• < - Less than
• <= - Less than or equal
• == - Equal (Note: Not "=" which is used for assignment!)
• != - Not equal

 The result of a comparison is a Boolean value which is either True or
False.

24
Conditions with and, or, not
 A condition is an expression that is either True or False and may
contain one or more comparisons. Conditions may be combined using:
and, or, not.
• order of evaluation: not, and, or May change order with parentheses.
Operation Syntax Examples Output

AND
(True if both are True)

and True and True
False and True
False and False

True
False
False

OR
(True if either or both are True)

or True or True
False or True
False or False

True
True
False

NOT
(Reverses: e.g. True becomes False)

not not True
not False

False
True

25

Condition Examples
n = 5
v = 8
print(n > 5) # False
print(n == v) # False
print(n != v) # True
print(n == v and n+4>v) # False
print(n == v or n+4>v) # True
print(n+1 == v-2 or not v>4) # True

26

Python Condition Question
 Question: How many of the following conditions are TRUE?

 1) True and False
 2) not True or not False
 3) 3 > 5 or 5 > 3 and 4 != 4
 4) (1 < 2 or 3 > 5) and (2 == 2 and 4 != 5)
 5) not (True or False) or True and (not False)

 A) 0 B) 1 C) 2 D) 3 E) 4

27

Decisions
 Decisions allow the program to perform different actions based on
conditions. Python decision syntax:

• The statement after the if condition is only performed if the condition is True.
• If there is an else, the statement after the else is done if condition is False.
• Indentation is important! Remember the colon!

if condition:
 statement

if condition:
 statement
else:
 statement

Done if condition
is True

Done if condition
is False

28

Decisions if/elif Syntax
 If there are more than two choices, use the if/elif/else syntax:

if condition:
 statement
elif condition:
 statement
elif condition:
 statement
else:
 statement

if n == 1:
print("one")

elif n == 2:
print("two")

elif n == 3:
print("three")

else:
print("Too big!")

print("Done!")

29
Decisions: Block Syntax
 Statements executed after a decision in an if statement are indented
for readability. This indentation is also how Python knows which
statements are part of the block of statements to be executed.
• If you have more than one statement, make sure to indent them. Be consistent

with either using tabs or spaces. Do not mix them!

if age > 19 and name > "N":
print("Not a teenager")
print("Name larger than N")

else:
print("This is statement #1")
print(" and here is statement #2!")

30

Question: Decisions
 Question: What is the output of the following code?

 A) nothing B) one C) two D) three

n = 3
if n < 1:

print("one")
elif n > 2:

print("two")
elif n == 3:

print("three")

31

Question: Decisions (2)
 Question: What is the output of the following code?

 A) nothing
 B) one
 C) two
 D) three
 E) error

n = 3
if n < 1:

print("one")
elif n > 2

print("two")
else:

print("three")

32

Question: Decisions (3)
 Question: What is the output of the following code?

 A) nothing
 B) one
 four
 C) three
 D) three
 four
 E) error

n = 1
if n < 1:

print("one")
elif n > 2:

print("two")
else:

print("three")
print("four")

33

Question: Decisions (4)
 Question: What is the output of the following code?
 A) nothing D) one
 B) one five
 four zero
 C) one four
 five
 four E) error

n = 0
if n < 1:

print("one")
print("five")

elif n == 0:
print("zero")

else:
print("three")

print("four")

34
Try it: Decisions
 Question 1: Write a Python program that asks the user for a number
then prints out if it is even or odd.

 Question 2: Write a Python program that asks the user for a number
between 1 and 5 and prints out the word for that number (e.g. 1 is
one). If the number is not in that range, print out error.

DATA 301
Extra Reference slides about Python

Dr. Firas Moosvi
University of British Columbia Okanagan

firas.moosvi@ubc.ca

36

Loops and Iteration
 A loop repeats a set of statements multiple times until some condition
is satisfied.
• Each time a loop is executed is called an iteration.

 A for loop repeats statements a number of times.

 A while loop repeats statements while a condition is True.

37
The while Loop
 The most basic looping structure is the while loop.
 A while loop continually executes a set of statements while a condition
is true.

 Syntax:

 Example:
Question: What does this print?

while condition:
 statements

n = 1
while n <= 5:
 print(n)
 n = n + 1 # Shorthand: n += 1

38

Question: while Loop
 Question: What is the output of the following code?

 A) numbers 3 to -1 B) numbers 3 to 0 C) numbers 4 to 0
 D) numbers 4 to -1 E) numbers 4 to infinity

n = 4
while n >= 0:
 n = n - 1
 print(n)

39

Question: while Loop (2)
 Question: What is the output of the following code?

 A) nothing B) numbers 1 to 5 C) numbers 1 to 6 D) lots of 1s

n = 1
while n <= 5:
 print(n)
n = n + 1

40

The for Loop
 A for loop repeats statements a given number of times.

 Python for loop syntax:

for i in range(1,6):
 print(i)

Starting number

Up to but not including
ending number

41

Using range
 The basic form of range is:

• start is inclusive, end is not inclusive
• default increment is 1

 May also specify an increment:

 or just the end:

range(start,end)

range(start, end, increment)

range(end)

42
For Loop and While Loop
 The for loop is like a short-hand for the while loop:

i=0 while i < 10:
 print(i)
 i += 1

for i in range(0, 10, 1):
 print(i)

43
Common Problems – Infinite Loops
 Infinite loops are caused by an incorrect loop condition or not updating
values within the loop so that the loop condition will eventually be
false.

 Example:
n = 1
while n <= 5:
 print(n)
 # Forgot to increase n -> infinite loop

44
Common Problems – Off-by-one Error
 The most common error is to be "off-by-one". This occurs when you
stop the loop one iteration too early or too late.

 Example:
• This loop was supposed to print 0 to 10, but it does not.

Question: How can we fix this code to print 0 to 10?

for i in range(0,10):
 print(i)

45

Question: for Loop
 Question: How many numbers are printed with this loop?

 A) 0 B) 9 C) 10 D) 11 E) error

for i in range(1,10):
 print(i)

46

Question: for Loop
 Question: How many numbers are printed with this loop?

 A) 0 B) 9 C) 10 D) 11 E) error

for i in range(11,0):
 print(i)

47
Try it: for Loops
 Question 1: Write a program that prints the numbers from 1 to 10 then
10 to 1.

 Question 2: Write a program that prints the numbers from 1 to 100
that are divisible by 3 and 5.

 Question 3: Write a program that asks the user for 5 numbers and
prints the maximum, sum, and average of the numbers.

48

Lists Overview
 A list is a collection of data items that are referenced by index.
• Lists in Python are similar to arrays in other programming languages

 A list allows multiple data items to be referenced by one name and
retrieved by index.

 Python list:

0

Indexes
list variable

name

data = [100, 200, 300, 'one', 'two', 600]
1 2 3 4 5

49

Retrieving Items from a List
 Items are retrieved by index (starting from 0) using square brackets:
data = [100, 200, 300, 'one', 'two', 600]
print(data[0]) # 100
print(data[4]) # 'two'
print(data[6]) # error – out of range
print(data[len(data)-1]) # 600
print(data[-1]) # 600
print(data[2:4]) # [300, 'one']

Create an empty list:
emptyList = []

50
List Operations

Operation Syntax Examples Output

Add item list.append(val) data.append(1) [1, 2, 3, 5, 1]

Insert item list.insert(idx,val) data.insert(3,4) [1, 2, 3, 4, 5]

Remove item list.remove(val) data.remove(5) [1, 2, 3]

Update item list[idx]=val lst[0]=10 [10]

Length of list len(list) len(data) 4

Slice of list list[x:y] data[0:3] [1, 2, 3]

Find index list.index(val) data.index(5) 3

Sort list list.sort() data.sort() [1, 2, 3, 5]

data = [1, 2, 3, 5]
lst = []

51

List Details
 If you provide an index outside of the valid range, Python will return an
index error.

 To sort in reverse order, do this:

 For loops are used to iterate though items in a list:

data.sort(reverse=True)

for v in data:
 print(v)

52

Advanced: Python Lists Comprehensions
 List comprehensions build a list using values that satisfy a criteria.

 Equivalent to:

evenNums100 = [n for n in range(101) if n%2==0]

evenNums100 = []
for n in range(101):
 if n%2==0:
 evenNums100.append(n)

53

Advanced: Python Lists Slicing
 List slicing allows for using range notation to retrieve only certain
elements in the list by index. Syntax:

 Example:

list[start:end:stride]

data = list(range(1,11))
print(data) # [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
print(data[1:8:2]) # [2, 4, 6, 8]
print(data[1::3]) # [2, 5, 8]

54

Question: List
 Question: At what index is item with value 3?

 A) 0 B) 1 C) 2 D) 3 E) not there

data = [1, 2, 3, 4, 5]
data.remove(3)
data.insert(1, 3)
data.append(2)
data.sort()
data = data[1:4]

55
Try it: Lists
 Question 1: Write a program that puts the numbers from 1 to 10 in a
list then prints them by traversing the list.

Question 2: Write a program that will multiply all elements in a list by 2.

 Question 3: Write a program that reads in a sentence from the user
and splits the sentence into words using split(). Print only the words
that are more than 3 characters long. At the end print the total
number of words.

56

Python Dictionary
 A dictionary is a collection of key-value pairs that are manipulated
using the key.
dict = {1:'one', 2:'two', 3:'three'}
print(dict[1]) # one
print(dict['one']) # error - key not found
if 2 in dict: # Use in to test for key
 print(dict[2]) # two
dict[4] = 'four' # Add 4:'four'
del dict[1] # Remove key 1
dict.keys() # Returns keys
dict.values() # Returns values

57

Question: Dictionary
 Question: What is the value printed?

 A) 7 B) 0 C) 10 D) 6 E) error

data = {'one':1, 'two':2, 'three':3}
data['four'] = 4
sum = 0
for k in data.keys():
 if len(k) > 3:
 sum = sum + data[k]
print(sum)

58
Try it: Dictionary
 Question: Write a program that will use a dictionary to record the
frequency of each letter in a sentence. Read a sentence from the user
then print out the number of each letter.

 Code to create the dictionary of letters:
import string
counts = {}
for letter in string.ascii_uppercase:
 counts[letter] = 0
print(counts)

59

Functions and Procedures
 A procedure (or method) is a sequence of program statements that
have a specific task that they perform.
• The statements in the procedure are mostly independent of other statements in

the program.

 A function is a procedure that returns a value after it is executed.

 We use functions so that we do not have to type the same code over
and over. We can also use functions that are built-in to the language or
written by others.

60 Defining and Calling
Functions and Procedures

 Creating a function involves writing the statements and providing a
function declaration with:
• a name (follows the same rules as identifiers)
• list of the inputs (called parameters)
• the output (return value) if any

 Calling (or executing) a function involves:
• providing the name of the function
• providing the values for all arguments (inputs) if any
• providing space (variable name) to store the output (if any)

61
Defining and Calling a Function
 Consider a function that returns a number doubled:

def doubleNum(num):
 num = num * 2
 print("Num: "+num)
 return num

Call function by
name

def
Keyword Parameter Name

n = doubleNum(5) # 10
print(str(doubleNum(n))) # ??

Argument

Function Name

62

Python Built-in Math Functions

Math
import math
print(math.sqrt(25))

Import only a function
from math import sqrt
print(sqrt(25))

Print all math functions
print(dir(math))

63

Other Python Built-in Functions
 max, min, abs:

 type() returns the argument data type:

print(max(3, 5, 2)) # 5
print(min(3, 5, 2)) # 2
print(abs(-4)) # 4

print(type(42)) # <class 'int'>
print(type(4.2)) # <class 'float'>
print(type('spam')) # <class 'str'>

64

Python Random Numbers
 Use random numbers to make the program have different behavior
when it runs.
from random import randint
coin = randint(0, 1) # 0 or 1
die = randint(1, 6) # 1 to 6
print(coin)
print(die)

65

Advanced: Python Functions
 Python supports functional programming allowing functions to be
passed like variables to other functions.
• Lambda functions are functions that do not have a name.

 Example:
def doFunc(func, val):
 return func(val)

print(doFunc(doubleNum, 10)) # 20
print(doFunc(lambda x: x * 3, 5)) # 15

66

Question: Functions
 Question: What is the value printed?

 A) 0 B) 6 C) 15 D) 21 E) error

def triple(num):
 return num * 3

n = 5
print(triple(n)+triple(2))

67

Practice Questions: Functions
 1) Write a function that returns the largest of two numbers.

 2) Write a function that prints the numbers from 1 to N where N is its
input parameter.

 Call your functions several times to test that they work.

68

Conclusion
 Python is a general, high-level programming language designed for
code readability and simplicity.

 Programming concepts covered:
• variables, assignment, expressions, strings, string functions

• making decisions with conditions and if/elif/else

• repeating statements (loops) using for and while loops

• reading input with input() and printing with print()

• data structures including lists and dictionaries

• creating and calling functions, using built-in functions (math, random)

 Python is a powerful tool for data analysis and automation.

69

Objectives
• Explain what is Python and note the difference between Python 2 and 3
• Define: algorithm, program, language, programming
• Follow Python basic syntax rules including indentation
• Define and use variables and assignment
• Apply Python variable naming rules
• Perform math expressions and understand operator precedence
• Use strings, character indexing, string functions
• String functions: split, substr, concatenation
• Use Python datetime and clock functions
• Read input from standard input (keyboard)

70

Objectives (2)
• Create comparisons and use them for decisions with if
• Combine conditions with and, or, not
• Use if/elif/else syntax
• Looping with for and while
• Create and use lists and list functions
• Advanced: list comprehensions, list slicing
• Create and use dictionaries
• Create and use Python functions
• Use built-in functions in math library
• Create random numbers
• Advanced: passing functions, lambda functions

